
XtratuM Hypervisor for LEON3
Volume 2: User Manual

Miguel Masmano, Ismael Ripoll, Alfons Crespo

February, 2011
Reference: xm-3-usermanual-022c

This page is intentionally left blank.

iii/119

DOCUMENT CONTROL PAGE

TITLE: XtratuM Hypervisor for LEON3 : Volume 2: User Manual

AUTHOR/S: Miguel Masmano, Ismael Ripoll, Alfons Crespo

LAST PAGE NUMBER: 119

VERSION OF SOURCE CODE: XtratuM 3 for LEON3 ()

REFERENCE ID: xm-3-usermanual-022c

SUMMARY: This guide describes the fundamental concepts of the XtratuM hypervisor, its API.

DISCLAIMER: This documentation is currently under active development. Therefore, no explicit or implied
warranties in respect of any properties, including, but not limited to, correctness and fitness for purpose.
Contributions of material, suggestions and corrections are welcome.

REFERENCING THIS DOCUMENT:

@techreport {xm-3-usermanual-022c,
title = {XtratuM Hypervisor for LEON3 : Volume 2: User Manual},
authors = { Miguel Masmano & Ismael Ripoll & Alfons Crespo},
institution = {Universidad politécnica de Valencia},
number = {xm-3-usermanual-022c},
date={February, 2011},

}
Copyright c© February, 2011 Miguel Masmano, Ismael Ripoll and Alfons Crespo

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled ”GNU Free Documentation License”.

Changes:

Version Date Comments

0.1 February, 2010 [xm-3-usermanual-022] Initial document, based on the document XM-
usermanual-002j. Code version 3.1.0.
• Major changes in the ABI chapter (Binary interfaces).
• Major changes in the tools chapter.
• Internal object programming reworked. No impact on the libxm API.

0.2 May, 2010 [xm-3-usermanual-022b]. Code version 3.1.2
• Multi-plan support. Sections 2.5.1 and 5.7.
• The PIT (Partition Information Table) has been removed. The PIT
fields have been moved to the PCT. The PCT is not read-only.
• Message notification support removed.

0.3 October, 2010 [????].
• Global line numbering added.

xm-3-usermanual-022c Printed: March 1, 2011

iv/119

Version Date Comments

0.4 February, 2011 [xm-3-usermanual-022c]. Code version 3.2.0
•

Several typos corrected.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Contents

Preface ix

1 Introduction 1

1.1 History . 2

2 XtratuM Architecture 5

2.1 System operation . 6

2.2 Partition operation . 7

2.3 System partitions . 8

2.4 Names and identifiers . 8

2.5 Partition scheduling . 9

2.5.1 Multiple scheduling plans . 12

2.6 Inter-partition communications (IPC) . 13

2.7 Health monitor (HM) . 14

2.7.1 HM Events . 15

2.7.2 HM Actions . 16

2.7.3 HM Configuration . 17

2.7.4 HM notification . 17

2.8 Access to devices . 17

2.9 Traps, interrupts and exceptions . 18

2.9.1 Traps . 18

2.9.2 Interrupts . 19

2.10 Traces . 19

2.11 Clocks and timers . 20

2.12 Status . 21

2.13 Summary . 22

3 Developing Process Overview 23

3.1 Development at a glance . 24

3.2 Building XtratuM . 25

v/ 119

vi/119 Contents

3.3 System configuration . 26

3.4 Compiling partition code . 27

3.5 Passing parameters to the partitions: customisation files 28

3.6 Building the final system image . 28

4 Building XtratuM 29

4.1 Developing environment . 29

4.2 Compile XtratuM Hypervisor . 29

4.3 Generating binary a distribution . 31

4.4 Installing a binary distribution . 31

4.5 Compile the Hello World! partition . 33

4.6 XtratuM directory tree . 34

5 Partition Programming 35

5.1 Implementation requirements . 35

5.2 XAL development environment . 36

5.3 Partition definition . 38

5.4 The “Hello World” example . 39

5.4.1 Included headers . 44

5.5 Partition reset . 45

5.6 System reset . 45

5.7 Scheduling . 45

5.7.1 Slot identification . 45

5.7.2 Managing scheduling plans . 46

5.8 Console output . 46

5.9 Inter-partition communication . 47

5.9.1 Message notification . 48

5.10 Peripheral programming . 48

5.11 Traps, interrupts and exceptions . 49

5.11.1 Traps . 49

5.11.2 Interrupts . 49

5.11.3 Exceptions . 51

5.12 Clock and timer services . 52

5.12.1 Execution time clock . 52

5.13 Processor management . 52

5.13.1 Managing stack context . 53

5.14 Tracing . 53

5.14.1 Trace messages . 53

Printed: March 1, 2011 xm-3-usermanual-022c

Contents vii/119

5.14.2 Reading traces . 55

5.14.3 Configuration . 55

5.15 System and partition status . 55

5.16 Memory management . 56

5.17 Releasing the processor . 57

5.18 Partition customisation files . 57

5.19 Assembly programming . 58

5.19.1 The object interface . 59

5.20 Manpages summary . 59

6 Binary Interfaces 63

6.1 Data representation . 63

6.2 Hypercall mechanism . 64

6.3 Executable formats overview . 64

6.4 Partition ELF format . 65

6.4.1 Partition image header . 65

6.4.2 Partition control table (PCT) . 67

6.5 XEF format . 68

6.5.1 Compression algorithm . 71

6.6 Container format . 71

7 Booting 75

7.1 Boot configuration . 76

8 Configuration 79

8.1 XtratuM source code configuration (menuconfig) . 79

8.2 Resident software source code configuration (menuconfig) 81

8.2.1 Memory requirements . 82

8.3 Hypervisor configuration file (XM CF) . 83

8.3.1 Data representation and XPath syntax . 83

8.3.2 The root element: /SystemDescription . 85

8.3.3 The /SystemDescription/XMHypervisor element 85

8.3.4 The /SystemDescription/HwDescription element 87

8.3.5 The /SystemDescription/ResidentSw element 88

8.3.6 The /SystemDescription/PartitionTable/Partition element 88

8.3.7 The /SystemDescription/Channels element . 90

9 Tools 91

9.1 XML configuration parser (xmcparser) . 91

xm-3-usermanual-022c Printed: March 1, 2011

viii/119 Contents

9.1.1 xmcparser . 92

9.2 ELF to XEF (xmeformat) . 92

9.2.1 xmeformat . 92

9.3 Container builder (xmpack) . 94

9.3.1 xmpack . 94

9.4 Bootable image creator (rswbuild) . 96

9.4.1 rswbuild . 96

10 Security issues 97

10.1 Invoking a hypercall from libXM . 97

10.2 Preventing covert/side channels due to scheduling slot overrun 97

A XML Schema Definition 99

A.1 XML Schema file . 99

A.2 Configuration file example . 107

GNU Free Documentation License 111

1. APPLICABILITY AND DEFINITIONS . 111

2. VERBATIM COPYING . 112

3. COPYING IN QUANTITY . 113

4. MODIFICATIONS . 113

5. COMBINING DOCUMENTS . 114

6. COLLECTIONS OF DOCUMENTS . 115

7. AGGREGATION WITH INDEPENDENT WORKS . 115

8. TRANSLATION . 115

9. TERMINATION . 115

10. FUTURE REVISIONS OF THIS LICENSE . 116

ADDENDUM: How to use this License for your documents . 116

Glossary of Terms and Acronyms 117

Index 119

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Preface

The audience for this document is software developers that have to use directly the services of XtratuM.
The reader is expected to have strong knowledge of the LEON3 (SPARC v8) architecture and experience
in programming device drivers. It is also advisable to have some knowledge of the ARINC-653 and
related standards.

Typographical conventions

The following font conventions are used in this document:

• typewriter: used in assembly and C code examples, and to show the output of commands.

• italic: used to introduce new terms.

• bold face: used to emphasize or highlight a word or paragraph.

Code

Code examples are printed inside a box like this:

static inline void XM_sparcv8_set_psr(xm_u32_t flags) {

__asm__ __volatile__("mov "TO_STR(sparcv8_set_psr_nr)", %%o0\n\t" \

"mov %0, %%o1\n\t" \

__DO_XMAHC :: "r"(flags) : "o0", "o1");

}

Listing 1: Sample code

Caution sign

The caution sign stresses information that is critical to the integrity or continuity of the system.

Support

Alfons Crespo
Universidad Politcnica de Valencia
Instituto de Automtica e Informtica Industrial
Camino de vera s/n

ix/ 119

x/119 Chapter 0. Preface

CP: 46022
Valencia, Spain

The official XtratuM web site is: http://www.xtratum.org

Acknowledgements

Porting to LEON3 with MMU has been done in the frame of the “ESA Project AO5829 Securely
Partitioning Spacecraft Computing Resources” leaded by Astrium EADS.

Printed: March 1, 2011 xm-3-usermanual-022c

http://www.xtratum.org

Volume 2: User Manual

Chapter 1

Introduction

This document describes the XtratuM hypervisor, and how to write applications to be executed as
XtratuM partitions.

A hypervisor is a layer of software that provides one or more virtual execution environments for par-
titions. Although virtualisation concepts has been employed since the 60’s (IBM 360), the application
of these concepts to the server, desktop, and recently the embedded and real-time computer segments, 5

is a relatively new. There have been some attempts, in the desktop and server markets, to standardise
“how” an hypervisor should operate, but the research and the market is not mature enough. In fact,
there is still not a common agreement on the terms used to refer to some of the new objects introduced.
Check the glossary A.2 for the exact meaning of the terms used in this document.

In the case of embedded systems and, in particular, in avionics, the ARINC-653 standard defines a 10

partitioning system. Although the ARINC-653 standard was not designed to describe how a hypervisor
has to operate, some parts of the APEX model of ARINC-653 are quite close to the functionality provided
by a hypervisor.

During the porting of XtratuM to the LEON2 and LEON3 processors, we have also adapted the XtratuM
API and internal operations to resemble ARINC-653 standard. It is not our intention to convert XtratuM 15

in an ARINC-653 compliant system. ARINC-653 relies on the idea of a “separation kernel”, which
basically consists in extending and enforcing the isolation between processes or a group of processes.
ARINC-653 defines both the API and operation of the partitions, but also how the threads or processes
are managed inside each partition. It provides an complete APEX.

In a bare hypervisor, and in particular in XtratuM, a partition is a virtual computer rather than a group 20

of strongly isolated processes. When multi-threading (or tasking) support is needed in a partition, then
an operating system or a run-time support library has to provide support to the application threads. In
fact, it is possible to run a different operating system on each XtratuM partition.

It is important to point out that XtratuM is a bare-metal hypervisor with extended capabilities for
highly critical systems. XtratuM provides a raw (close to the native hardware) virtual execution envi- 25

ronment, rather than a full featured one. Therefore, although XtratuM by itself can not by compat-
ible with the ARINC-653 standard, the philosophy of the ARINC-653 has been employed when
applicable.

This document is organised as follows: chapter 2 describes the XtratuM architecture describing how
the partitions are organised and scheduled; also, an overview of the XtratuM services is presented. 30

Chapter 3 outlines the development process on XtratuM: roles, elements, etc.

Chapter 4 describes the compilation process, which involves several steps to finally obtain a binary
code which has to be loaded in the embedded system.

1/ 119

2/119 Chapter 1. Introduction

The goal of chapter 5 is to provide a view of the API provided by XtratuM to develop applications
to be executed as partitions. The chapter puts more emphasis in the development of bare-applications35

than applications running on a real-time operating system.

Chapter 6 deals with the concrete structure and internal formats of the different components involved
in the system development: system image, partition format, partition tables. The chapter ends with the
description of the hypercall mechanism.

Chapter 7 and 8 detail the booting process and the configuration elements of the system, respectively.40

Finally, chapter 8 provides information of the preliminar tools developed to analyse system configura-
tion schemas (XML format) and generate the appropriate internal structures to configure XtratuM for
a specific payload.

1.1 History

The term XtratuM derives from the word “stratum”. In geology and related fields it means:

Layer of rock or soil with internally consistent characteristics that distinguishes it from con-45

tiguous layers.

In order to stress the tight relation with Linux and the open source the “S” was replaced by “X”. XtratuM
would be the first layer of software (the one closer to the hardware), which provides a rock solid basis
for the rest of the system.

2004

2005

2006

2007

2008

2009

2010

2011

2.0

2.1

 Temporal & spatial isolation
Linux independent hypervisor [i386]

2.1.1

2.2

2.1.2
Highly Critical features added

(like ARINC-653) [Sparcv8]

2.2.1

3.1.0

2.2.2

2.2.4

Full featured highly
 critical hypervisor

[Sparcv8, i386]

3.1.1

4.0

3.1.2 3.2 Highly Critical + MMU

Highly Critical + MMU + Multiprocessor

0.01
First XtratuM version, proof-of-concept

Linux 2.4 [i386]

0.3
Second proof-of-concept

Linux 2.4 [i386]

1.0
Code rewritten from scratch,

ported to Linux 2.6 [i386]

Ongoing
developments

Temporal & spatial
isolation

Linux module.
Only temporal isolation

Figure 1.1: XtratuM evolution.

The first version of XtratuM (1.0) was initially developed to meet the requirements of a hard real-50

time system. The main goal of XtratuM 1.0 was to guarantee the temporal constrains for the real-time
partitions. Other characteristics of this version are:

• The first partition shall be a modified version of Linux.

• Partition code has to be loaded dynamically.

Printed: March 1, 2011 xm-3-usermanual-022c

1.1. History 3/119

• There is not a strong memory isolation between partitions. 55

• Linux is executed in processor supervisor mode.

• Linux is responsible of booting the computer.

• Fixed priority partition scheduling.

XtratuM 2.0 was a completely new redesign and implementation. This new version had nothing in
common with the first one but the name. It was a truly hypervisor with both, spatial and temporal 60

isolation. This version was developed for the x86 architecture but never released.

XtratuM 2.1 was the first porting to the LEON2 processor, and several safety critical features were
added. Just to mention the most relevant features:

• Bare metal hypervisor.

• Employs para-virtualisation techniques. 65

• A hypervisor designed for embedded systems: some devices can be directly managed by a desig-
nated partition.

• Strong temporal isolation: fixed cyclic scheduler.

• Strong spatial isolation: all partitions are executed in processor user mode, and do not share
memory. 70

• Resource allocation via a configuration table.

• Robust communication mechanisms (ARINC sampling and queuing ports).

Version 2.1 was a prototype to evaluate the capabilities of the LEON2 processor to support a hypervisor
system.

XtratuM 2.2 was a more mature hypervisor on the LEON2 processor. This version has most of the 75

final functionality.

The current development version is 3.1, which contains MMU support. Version 3.1 is stil under active
development. The first stable version with MMU support will be named 3.2.

In what follows, the name XtratuM will be used to refer to the version 3.1 and eventually to 3.2 of
XtratuM. 80

xm-3-usermanual-022c Printed: March 1, 2011

This page is intentionally left blank.

Volume 2: User Manual

Chapter 2

XtratuM Architecture

This chapter introduces the architecture of XtratuM.

The concept of partitioned software architectures was developed to address security and safety issues.
The central design criteria involves isolating modules of the system into partitions. Temporal and spatial
isolation are the key aspects in a partitioned system. Based on this approach, the Integrated Modular
Avionics (IMA) is a solution that allowed the Aeronautic Industry to manage the increment of the 85

functionalities of the software maintaining the level of efficiency.

XtratuM is a bare-metal hypervisor that has been designed to achieve temporal and spatial partitioning
for safety critical applications. Figure 2.1 shows the complete architecture.

Figure 2.1: XtratuM architecture.

The main components of this architecture are:

• Hypervisor: XtratuM provides virtualisation services to partitions. It is executed in supervisor 90

processor mode and virtualises the CPU, memory, interrupts, and some specific peripherals. The
internal XtratuM architecture includes the following components:

– Memory management: XtratuM provides a memory model for the partitions enforcing the
spatial isolation. It uses the hardware mechanisms to guarantee the isolation.

– Scheduling: Partitions are scheduled using a cyclic scheduling policy. 95

– Interrupt management: Interrupts are handled by XtratuM and, depending on the interrupt
nature, propagated to the partitions. XtratuM provides a interrupt model to the partitions
that extends the concept of processor interrupts by adding a 32 additional interrupt numbers.

5/ 119

6/119 Chapter 2. XtratuM Architecture

– Clock and timer management:

– IP communication: Inter-partition communication is related with the communications be-100

tween two partitions or between a partition and the hypervisor. XtratuM implements a
message passing model which highly resembles the one defined in the ARINC-653. A com-
munication channel is the logical path between one source and one or more destinations.
Two basic transfer modes are provided: sampling and queuing. Partitions can access to chan-
nels through access points named ports. The hypervisor is responsible for encapsulating and105

transporting messages.

– Health monitor: The health monitor is the part of XtratuM that detects and reacts to anoma-
lous events or states. The purpose of the HM is to discover the errors at an early stage
and try to solve or confine the faulting subsystem in order to avoid or reduce the possible
consequences.110

– Tracing facilities: XtratuM provides a mechanism to store and retrieve the traces generated
by partitions and XtratuM itself. Traces can be used for debugging, during the development
phase of the application, but also to log relevant events or states during the production
phase.

• API: Defines the para-virtualised services provided by XtratuM. The access to these services is115

provided through hypercalls.

• Partitions: A partition is an execution environment managed by the hypervisor which uses the
virtualised services. Each partition consists of one or more concurrent processes (implemented by
the operating system of each partition), that share access to processor resources based upon the
requirements of the application. The partition code can be: an application compiled to be exe-120

cuted on a bare-machine; a real-time operating system (or runtime support) and its applications;
or a general purpose operating system and its applications.

Partitions need to be virtualised to be executed on top of a hypervisor. Depending on the type of
execution environment, the virtualisation implications in each case can be summarised as:

Bare application : The application has to be virtualised using the services provided by XtratuM. The125

application is designed to run directly on the hardware and the hardware must be aware of this
fact.

Operating system application : When the application runs on top of a (real-time) operating system, it
uses the services provided by the operating system and does not need to be virtualised. However,
the operating system has to deal with the virtualisation and be virtualised (ported on top of130

XtratuM).

2.1 System operation

The system states and its transitions are shown in figure 2.2.

At boot time, the resident software loads the image of XtratuM in main memory and transfers the
control to the entry point of XtratuM. The period of time between starting from the entry point, to the
execution of the first partition is defined as boot state. In this state, the scheduler is not enabled and135

the partitions are not executed (see chapter 7).

At the end of the boot sequence, the hypervisor is ready to start executing partition code. The system
changes to normal state and the scheduling plan is started. Changing from boot to normal state is
performed automatically (the last action of the set up procedure).

The system can switch to halt state by the health monitoring system in response to a detected error140

or by a system partition invoking the service XM halt system(). In the halt state: the scheduler is

Printed: March 1, 2011 xm-3-usermanual-022c

2.2. Partition operation 7/119

Boot

Normal Halt

Hardware
reset

XM_reset_system()
or

Hardware reset

XM_halt_system()
or

XM_HM_AC_HYPERVISOR_COLD_RESET
or

XM_HM_AC_HYPERVISOR_WARM_RESET

Figure 2.2: System states and transitions.

disabled, the hardware interrupts are disabled, and the processor enters in an endless loop. The only
way to exit from this state is via an external hardware reset.

It is possible to perform a warm or cold (hardware reset) system reset by using the hypercall (see
XM reset system()). On a warm reset, the system increments the reset counter, and a reset value is 145

passed to the new rebooted system. On a cold reset, no information about the state of the system is
passed to the new rebooted system.

2.2 Partition operation

Once XtratuM is in normal state, partitions are started. The partition’s states and transitions are shown
in figure 2.3.

XM_halt_partition()
or

XM_HM_AC_HALT

Boot

Suspend Halt

XM_HM_AC_PARTITION_COLD_RESET
or

XM_HM_AC_PARTITION_WARM_RESET
or

XM_reset_partition()

Normal
- ready
- running
- idle

XM_suspend_partition()
or

XM_HM_AC_SUSPEND

XM_resume_partition()

Figure 2.3: Partition states and transitions.

On start-up each partition is in boot state. It has to prepare the virtual machine to be able to run the 150

xm-3-usermanual-022c Printed: March 1, 2011

8/119 Chapter 2. XtratuM Architecture

applications1: it sets up a standard execution environment (that is, initialises a correct stack and sets up
the virtual processor control registers), creates the communication ports, requests the hardware devices
(I/O ports and interrupt lines), etc., that it will use. Once the operating system has been initialised, the
partition changes to normal mode.

The partition receives information from XtratuM about the previous executions, if any.155

From the point of view of the hypervisor, there is no difference between the boot state and the normal
state. In both states the partition is scheduled according to the fixed plan, and has the same capabilities.
Although not mandatory, it is recommended that the partition emits a partition’s state-change event
when changing from boot to normal state.

The normal state is subdivided in three sub-states:160

Ready The partition is ready to execute code, but is not scheduled because it is not in its time slot.

Running The partition is being executed by the processor.

Idle If the partition does not want to use the processor during its allocated time slot, it can relinquish
the processor, and waits for an interrupt or for the next time slot (see XM idle self()).

A partition can be moved to the halt state by itself or by a system partition. In the halt state, the165

partition is not executed by the scheduler and the time slot allocate to it is left idle (it is not allocated
to other partitions). All the resources allocated to the partition are released. It is not possible to return
to normal state.

In suspend state, a partition will not be scheduled and interrupts are not delivered. Interrupts raised
while in suspended state are left pending. If the partition returns to normal state, then pending in-170

terrupts are delivered to the partition. The partition can return to the normal state if requested by a
system partition by calling XM resume partition() hypercall.

2.3 System partitions

XtratuM defines two types of partitions: normal and system. System partitions are allowed to manage
and monitor the state of the system and other partitions. Some hypercalls cannot be called by a normal
partition or have restricted functionality.175

Note that system rights are related to the capability to manage the system, and not to the capability
to access directly to the native hardware or to break the isolation: a system partition is scheduled as a
normal partition; and it can only use the resources allocated to it in the configuration file.

Table 2.1 shows the list of hypercalls reserved for system partitions. A hypercall labeled as “partial”
indicates that a normal partition can invoke it if a system reserved service is not requested.180

A partition has system capabilities if the /System Description/Partition Table/Partition/@flags

attribute contains the flag “system” in the XML configuration file.

2.4 Names and identifiers

Each partition is globally identified by an unique number id. Partition identifiers are assigned by the
integrator in the XM CF file. XtratuM uses this number to refer to partitions. System partitions use
partition identifiers to refer to the target partition. There “C” macro XM PARTITION SELF can be used185

by a partition to refer to itself.

1We will consider that the partition code is composed of an operating system and a set of applications.

Printed: March 1, 2011 xm-3-usermanual-022c

2.5. Partition scheduling 9/119

Hypercall System

XM get partition status Yes
XM get plan status Yes
XM get system status Yes
XM halt partition Partial
XM halt system Yes
XM hm open Yes
XM hm read Yes
XM hm seek Yes
XM hm status Yes
XM memory copy Partial
XM reset partition Partial
XM reset system Yes
XM resume partition Yes
XM set plan Yes
XM shutdown partition Partial
XM suspend partition Partial
XM trace open Yes
XM trace read Yes
XM trace seek Yes
XM trace status Yes

Table 2.1: List of system reserved hypercalls.

These id’s are used internally as indexes to the corresponding data structures2. The fist “id” of each
object group shall start in zero and the next id’s shall be consecutive. It is mandatory to follow this
ordering in the XM CF file.

The attribute name of a partition is a human readable string. This string shall contain only the 190

following set of characters: upper and lower case letters, numbers and the underscore symbol. It is
advisable not to use the same name on different partitions. A system partition can get the name of
another partition by consulting the status object of the target partition.

In order to avoid name collisions, all the public symbols of XtratuM contain the prefix “xm”. Therefore,
the prefix “xm”, both in upper and lower case, is reserved. 195

2.5 Partition scheduling

XtratuM schedules partitions in a fixed, cyclic basis (ARINC-653 scheduling policy). This policy ensures
that one partition cannot utilise the processor for longer than intended to the detriment of the other
partitions. The set of time slots allocated to each partition are defined in the XM CF configuration during
the design phase. Each partition is scheduled for a time slot defined as a starting time and a duration.
Within a time slot, XtratuM allocates the processor to the partition. 200

If there are several concurrent activities in the partition, the partition shall implement its own schedul-
ing algorithm. This two-level scheduling scheme is known as hierarchical scheduling. XtratuM is not
aware of the scheduling policy used internally on each partition.

In general, a cyclic plan consists in a major time frame (MAF) which is periodically repeated. The
MAF is typically defined as the least common multiple of the periods of the partitions (or the periods 205

of the threads of each partition, if any).

2For efficiency and simplicity reasons.

xm-3-usermanual-022c Printed: March 1, 2011

10/119 Chapter 2. XtratuM Architecture

Name Period WCET Util %
Partition 1 System Mngmt 100 20 20
Partition 2 Flight Control 100 10 10
Partition 3 Flight Mngmt 100 30 30
Partition 4 IO Processing 100 20 20
Partition 5 IHVM 200 20 10

(a) Partition set.

Start Dur. Start Dur. Start Dur. Start Dur.
Partition 1 0 20 100 20
Partition 2 20 10 120 10
Partition 3 40 30 140 30
Partition 4 30 10 70 10 130 10 170 10
Partition 5 180 20

(b) Detailed execution plan.

Table 2.2: Partition definition.

For instance, consider the partition set of figure 2.2a, its hyper-period is 200 time units (milliseconds)
and has a CPU utilisation of the 90%. The execution chronogram is depicted in figure 2.4. One of the
possible cyclic scheduling plan can be described, in terms of start time and duration, as it is shown in
the table 2.2b.210

This plan has to be specified in the configuration file. An XML file describing this schedule is shown
below.

<CyclicPlanTable>

<Plan majorFrame="1s">

<Slot duration="20ms" id="0" partitionId="0" start="0ms"/>

<Slot duration="10ms" id="1" partitionId="1" start="20ms"/>

<Slot duration="10ms" id="2" partitionId="0" start="30ms"/>

<Slot duration="30ms" id="3" partitionId="2" start="40ms"/>

<Slot duration="10ms" id="4" partitionId="1" start="70ms"/>

<Slot duration="20ms" id="5" partitionId="0" start="100ms"/>

<Slot duration="10ms" id="6" partitionId="1" start="120ms"/>

<Slot duration="10ms" id="7" partitionId="0" start="130ms"/>

<Slot duration="30ms" id="8" partitionId="2" start="140ms"/>

<Slot duration="10ms" id="9" partitionId="1" start="170ms"/>

<Slot duration="20ms" id="10" partitionId="0" start="180ms"/>

</Plan>

</CyclicPlanTable>

Listing 2.1: /user/examples/sched events/xm cf.sparcv8.xml

0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Hypervisor

10

P2

P1

P3

P5

P4

Idle

Figure 2.4: Scheduling example.

One important aspect in the design of the XtratuM hypervisor scheduler is the consideration of the

Printed: March 1, 2011 xm-3-usermanual-022c

2.5. Partition scheduling 11/119

overhead caused by the partition’s context switch. Figure 2.5 shows the implications of this issue.
Subfigure 2.5a shows the context switch between partitions 1 and 2. To execute the partition, XtratuM 215

saves the partition 1’s context and loads the partition 2’s context.

XtratuM scheduling design tries to adjust as much as possible the beginning of the execution to the
specified starting time of the slot. To do that, when a slot is scheduled, XtratuM programs a timer with
the duration of the slot minus the temporal cost of the complete context switch (load and save the
context). Subfigure 2.5b shows this situation. 220

Slot 1

Partition2

XtratuM {Context switch

Partition1

Slot 2

(a)

Slot 1

Partition2

XtratuM {Context switch

Partition1

Slot 2

(b)

Slot 1

Partition2

XtratuM {Context switch

Partition1

Slot 2

hypercall

delay

scheduled preemption

(c)

Slot 1

Partition2

XtratuM {Current context switch

Partition1

Slot 2

WCETCS

Wasted time

(d)

Figure 2.5: Xtratum context switch analysis.

However, the scenario depicted in subfigure 2.5c can occur. In this case, just before the duration
timer expiration the partition invokes a hypercall. When the hypercall finishes, the timer interrupt is
detected and the context switch is done at that time. This situation can introduce some small delay in
the beginning of partition of the next scheduling time slot.

Figure 2.5d details what should be the value of the considered cost of the context switch. If the dura- 225

tion of the context switch is assumed as the worst case execution time of the context switch (WCETCS),
a situation like the one shown in figure 2.5d may happen. In this example, the cost of the context switch
is less than its WCETCS and, as consequence, an idle time has to be introduced to start the execution of
the partition at the specified time.

XtratuM copes this situation by implementing the following algorithm: 230

• When a partition is scheduled, a timer (Scheduler Timer, ST) is armed with a value that considers
the absolute start time of the next time slot, and the best case execution time of the context switch
(BCETCS).

• Two situations can introduce a small delay to the effective starting of the slot:

1. The actual cost of the context switch is larger than the BCETCS. In this case, the execution 235

will start with a delay that is WCETCS - BCETCS.

2. The ST expires while a hypercall is under execution. XtratuM will carry out the context
switch when the current hypercall is finished, which delays the context switch. The worst
case situation corresponds to the hypercall with longer execution time: WCETHC.

Both previous situations can occur simultaneously. So, the worst case delay can be estimated as 240

(WCETCS - BCETCC) + WCETHP.

xm-3-usermanual-022c Printed: March 1, 2011

12/119 Chapter 2. XtratuM Architecture

The cost of the context switch (both: WCETCS and BCETCS) and all hypercalls have been evaluated
and identified the worst case situation. In the document “Volume 3: Testing and Evaluation” it is pro-
vided a deep analysis of the hypercalls. The integrator must consider the worst case execution time
of the used hypercalls and the partition context switch to forecast the slot duration considering the245

hypercalls used in the partition and the XtratuM configuration parameters.

2.5.1 Multiple scheduling plans

In some cases, a single scheduling plan may be too restrictive. For example:

• Depending on the guest operating system, the initialisation can require a certain amount of time
and can vary significantly. If there is a single plan, the initialisation of each partition can require
different number of slots due to the fact that the slot duration has been designed considering the250

operational mode. This implies that a partition can be executing operational work whereas other
are still initialising its data.

• The system can require to execute some maintenance operations. These operation can require
other resource allocation than the operational mode.

In order to deal with these issues, XtratuM provides multiple scheduling plans that allows to reallocate255

the timing resources (the processor) in a controlled way. In the scheduling theory this process is known
as mode changes. Figure 2.6 shows how the modes have been considered in the XtratuM scheduling.

Boot

Halt

Normal Plan 0

Plan 1 Plan 2 Plan N

Initial
plan

Maintenance
plan

Figure 2.6: Scheduling modes.

The scheduler (and so the plans) are only active while the system is in normal mode. Plans are defined
in the XM CF file and identified with a number. Some plans are reserved or have a special meaning:

Plan 0: Initial plan. The system executes this plan after a system reset. The system will be in plan 0260

until a plan change is requested.

It is not legal to switch back to this plan. That is, this plan is only executed as a consequence of a
system reset (software or hardware).

Plan 1: Maintenance plan. This plan can be activated in two ways:

• As the a result of the health monitoring action XM HM AC SWITCH TO MAINTENANCE. The plan265

switch is done immediately.

Printed: March 1, 2011 xm-3-usermanual-022c

2.6. Inter-partition communications (IPC) 13/119

• Requested from a system partition. The plan switch occurs at the end the current plan.

It is advisable to allocate the first slot of this plan to a system partition, in order to start the
maintenance activity as soon as possible after the plan switch. Once the maintenance activities
has been completed, it is responsibility of a system partition to switch to another plan (if needed). 270

A system partition can also request a switch to this.

Plan x (x>1): Any plan greater than 1 is used defined. A system partition can switch to any defined
plan at any time.

Switching scheduling plans

When a plan switch is requested by a system partition (through a hypercall), the plan switch is not
synchronous; all the slots of the current plan will be completed, and the new plan will be started at the 275

end of the current one.

The plan switch that occurs as a consequence of the XM HM AC SWITCH TO MAINTENANCE action is syn-
chronous. The current slot is terminated, and the Plan 1 is started immediately.

2.6 Inter-partition communications (IPC)

Inter-partition communications are related with the communications between two partitions. XtratuM
implements a message passing model which highly resembles the one defined in the ARINC-653 stan- 280

dard. A message is a variable3 block of data. A message is sent from a partition source to one or more
partitions’ destinations. The data of a message is transparent to the message passing system.

A communication channel is the logical path between one source and one or more destinations.
Partitions can access to channels through access points named ports. The hypervisor is responsible
for encapsulating and transporting messages that has to arrive to the destination(s) unchanged. At 285

the partition level, messages are atomic entities i.e., either the whole message is received or nothing
is received. Partition developers are responsible for agreeing on the format (data types, endianess,
padding, etc.).

Channels, ports, maximum message sizes and maximum number of messages (queuing ports) are
entirely defined in the configuration files (see section 8). 290

XtratuM provides two basic transfer modes: sampling and queuing.

Sampling port: It provides support for broadcast, multicast and unicast messages. No queuing is
supported in this mode. A message remains in the source port until it is transmitted through the
channel or it is overwritten by a new occurrence of the message, whatever occurs first. Each new
instance of a message overwrites the current message when it reaches a destination port, and 295

remains there until it is overwritten. This allows the destination partitions to access the latest
message.

A partition’s write operation on a specified port is supported by XM write sampling message()

hypercall. This hypercall copies the message into an internal XtratuM buffer. Partitions can read
the message by using XM read sampling message() which returns the last message written in the 300

buffer. XtratuM copies the message to the partition space.

Any operation on a sampling port is non-blocking: a source partition can always write into the
buffer and the destination partition/s can read the last written message.

The channel has an optional configuration attribute named @refreshPeriod. This attribute de-
fines the maximum time that the data written in the channel is considered “valid”. Messages older 305

3XtratuM defines the maximum length of a message.

xm-3-usermanual-022c Printed: March 1, 2011

14/119 Chapter 2. XtratuM Architecture

than the valid period are marked as invalid. When a message is read, a bit is set accordingly to
the valid state of the message.

Queueing port: It provides support for buffered unicast communication between partitions. Each port
has associated a queue where messages are buffered until they are delivered to the destination
partition. Messages are delivered in FIFO order.310

Sending and receiving messages are performed by two hypercalls: XM send queuing message()

and XM receive queuing message(), respectively. XtratuM implements a classical producer-
consumer circular buffer without blocking. The sending operation writes the message from parti-
tion space into the circular buffer and the receive one performs a copy from the XtratuM circular
buffer into the destination memory.315

If the requested operation cannot be completed because the buffer is full (when trying to send
a message) or empty (when attempting to receive a message), then the operation returns im-
mediately with the corresponding error. The partition’s code is responsible for retrying the
operation later.

In order to optimise partition’s resources and reduce the performance loss caused by polling the state320

of the port. XtratuM triggers an extended interrupt when the a new message is written/sent to a port.
Since there is only one single interrupt line to notify for incoming messages, on the reception of the
interrupt, the partition code has to determine which port or ports are ready to perform the operation.
XtratuM maintains a bitmap in the Partition Control Table to inform about the state of each port. A “1”
in the corresponding entry indicates that the requested operation can be performed.325

When a new message is available in the channel, XtratuM triggers an extended interrupt to the desti-
nation(s).

2.7 Health monitor (HM)

The health monitor is the part of XtratuM that detects and reacts to anomalous events or states. The
purpose of the HM is to discover the errors at an early stage and try to solve or confine the faulting
subsystem in order to avoid a failure or reduce the possible consequences.330

It is important to clearly understand the difference between 1) an incorrect operation (instruction,
function, application, peripheral, etc.) which is handled by the normal control flow of the software,
and 2) an incorrect behaviour which affects the normal flow of control in a way not considered by the
developer or which can not be handled in the current scope.

An example of the first kind of errors is when the malloc() function returns a null pointer when335

there are not enough memory to attend the request. This error is typically handled by the program by
checking the return value. An attempt to execute a undefined instruction (processor instruction) may
not be properly handled by the program that attempted to execute it.

The XtratuM health monitoring system will manage those faults that cannot, or should not, be man-
aged at the scope where the fault occurs.340

The XtratuM HM system is composed of four logical blocks:

HM event detection:
to detect abnormal states, using logical probes in the XtratuM code.

HM actions:
a set of predefined actions to recover the fault or confine the error.345

HM configuration:
to bind the occurence of each HM event with the appropriate HM action.

Printed: March 1, 2011 xm-3-usermanual-022c

2.7. Health monitor (HM) 15/119

HM notification:
to report the occurrence of the HM events.

Since HM events are, by definition, the result of a non-expected behaviour of the system, it may be 350

difficult to clearly determine which is the original cause of the fault, and so, which is the best way to
handle the problem. XtratuM provides a set of “coarse grain” actions (see section 2.7.2) that can be
employed at the first stage, right when the fault is detected. Although XtratuM implements a default
action for each HM event, the integrator can map an HM action to each HM event using the XML
configuration file. 355

Once the defined HM action is carried out by XtratuM, a HM notification message is stored in the HM
log stream (if the hm event is marked to generate a log). A system partition can then read those log
messages and perform a more advanced error handling. As an example of what can be implemented:

1. Configure the hm action to stop the faulting partition, and log the event.

2. The system partition can resume an alternate one, a redundant dormant partition, which can be 360

implemented by another developer team to achieve diversity.

Since the differences between fault4 and error5 are so subtle and subjective, we will use both terms to
refer to the original reason of an incorrect state.

The XtratuM health monitoring subsystem defines four different execution scopes, depending on
which part of the system has been initially affected: 365

1. Process scope: Partition process or thread.

2. Partition scope: Partition operating system or run-time support.

3. Hypervisor scope: XtratuM code.

4. Board scope: Resident software (BIOS, BOOT ROM or firmware).

The scope6 where an HM event should be managed has to be greater than the scope where it was 370

“believed” to be produced.

There is not a clear and unique scope for each HM event. Therefore the same HM event may be
handled at different scopes. For example, fetching an illegal instruction is considered hypervisor scope
if it happens when while XtratuM is executing; and partition level if the event is raised while a partition
is running. 375

XtratuM tries to determine the most likely scope target, and the delivers the HM to the corresponding
upper scope.

Note that although in the LEON2 version of XtratuM there is no distinction between the first and
second scopes, it is important to consider that there are two different parts in the partition’s code: user
applications, and operating system. Therefore, it is consistent to deliver the first scope of HM events, 380

caused by a process or thread, to the second scope.

2.7.1 HM Events

There are three sources of HM events:

4Fault: What is believed to be the original reason that caused an error.
5Error: The manifestation of a fault.
6The term level is used in the ARINC-653 standard to refer to this idea

xm-3-usermanual-022c Printed: March 1, 2011

16/119 Chapter 2. XtratuM Architecture

fault error failure

fault error failure

XML
configuration

HM
subsystem

HM
actionsHM

events

HM
log message

XtratuM

Monitoring
Partition

fault error failure

HM log
 stream

XM_hm_open()
XM_hm_read()
XM_hm_seek()

Figure 2.7: Health monitoring overview.

• Events caused by abnormal hardware behaviour. These events are notified to XtratuM via proces-
sor traps. Most of the processor exceptions are managed as health monitoring events.

• Events detected and triggered by partition code. These events are usually related to checks or385

assertions on the code of the partitions. Health monitoring events raised by partitions are
a special type of tracing message (see sections 2.10). Highly critical tracing messages are
considered as HM events.

• Events triggered by XtratuM. Caused by a violation of a sanity check performed by XtratuM on its
internal state or the state of a partition.390

When the HM event is detected, the relevant information (error scope, offending partition id, memory
address, faulting device, etc.) is gathered and used to select the apropiate HM action.

2.7.2 HM Actions

Once an HM event is raised, XtratuM has to react quickly to the event. The set of configurable HM
actions are listed in the next table:

Action Description

XM HM AC IGNORE No action is performed.
XM HM AC SHUTDOWN The shutdown extended interrupt is sent to the failing parti-

tion.
XM HM AC COLD RESET The failing partition/processor is cold reset.
XM HM AC WARM RESET The failing partition/processor is warm reset.
XM HM AC SUSPEND The failing partition is suspended.
XM HM AC HALT The failing partition/processor is halted.
XM HM AC PROPAGATE No action is performed by XtratuM. The event is redirected to

the partition as a virtual trap.
XM HM AC SWITCH TO MAINTENANCE The current scheduling plan is switched to the maintenance

one.

395

Printed: March 1, 2011 xm-3-usermanual-022c

2.8. Access to devices 17/119

2.7.3 HM Configuration

There are two tables to bind the HM events with the desired handling actions:

XtratuM HM table: which defines the actions for those events that has to be managed at system or
hypervisor scope;

Partition HM table: which defined the actions for those events that has to be managed at hypervisor
or partition scope; 400

Note that the same HM event can be binded with different recovery actions in each partition HM table
and in the XtratuM HM table.

The HM system can be configured to send an HM message after the execution of the HM action. It is
possible to select whether an HM event is logger or not. See the chapter 8.

2.7.4 HM notification

The log events generated by the hm system (those event that are configured to generate a log) are 405

stored in the device configured in the XM CF configuration file.

In the case that the logs are stored in a log stream, then they can be retrieved by system partitions
using the XM hm X services.

The maximum number of messages on is configured in the XtratuM source code (see the section 8.1).

Health monitoring log messages are fixed length messages defined as follows:

typedef struct {

xm_u32_t eventId:13, system:1, reserved:1, validCpuCtxt:1, moduleId:8,

partitionId:8;

struct cpuCtxt cpuCtxt;

#define HM_PAYLOAD_WORDS 5

xm_u32_t word[HM_PAYLOAD_WORDS]; /* Payload */

xmTime_t timeStamp;

} xmHmLog_t;

Listing 2.2: /core/include/objects/hm.h

eventId: Identifies the event that caused this log. 410

system: Set if the error was raised while executing XtratuM code.

moduleId: In the case of events raised by a partition (as a consequence of a high critical trace message),
this field is a copy of the field with the same name of the trace message.

partitionId: The Id attribute of the partition that may caused the event.

word: Event specific information. 415

timeStamp: A time stamp of when the event was detected.

2.8 Access to devices

A partition, using exclusively a device (peripheral), can access the device through the device driver
implemented in the partition (figure 2.8a). The partition is in charge of handling properly the device.

xm-3-usermanual-022c Printed: March 1, 2011

18/119 Chapter 2. XtratuM Architecture

XtratuM

 Device

Device registers

Partition

XM_sparcv8_HWoutport()
XM_sparcv8_HWinport()

(a) Partition using exclusively a device.

XtratuM

 Device

Device registers

Partition

XM_sparcv8_HWoutport()
XM_sparcv8_HWinport()

Partition Partition

Sampling or queuing ports

(b) I/O Server partition.

The configuration file has to specify the I/O ports and the interrupt lines that will be used by each
partition.420

Two partitions cannot use the same the same interrupt line. XtratuM provides a fine grain access
control to I/O ports, so that, several partitions can use (read and write) different bits of the the same
I/O port. Also, it is possible to define a range of valid values that can be written in a I/O port (see
section 5.10).

When a device is used by several partitions, a user implemented I/O server partition (figure 2.8b) may425

be in charge of the device management. An I/O server partition is a specific partition which accesses and
controls the devices attached to it, and exports a set of services via the inter-partitions communication
mechanisms provided by XtratuM (sampling or queuing ports), enabling the rest of partitions to make
use of the managed peripherals. The policy access (priority, fifo, etc.) is implemented by the I/O server
partition.430

Note that the I/O server partition is not part of XtratuM. It should, if any, be implemented by the user
of XtratuM.

2.9 Traps, interrupts and exceptions

2.9.1 Traps

A trap is the mechanism provided by the LEON3 processor to implement the asynchronous transfer
of control. When a trap occurs, the processor switches to supervisor mode and unconditionally jumps
into a predefined handler.435

SPARC v8 defines 256 different trap handlers. The table which contains these handlers is called trap
table. The address of the trap table is stored in a special processor register (called $tbr). Both, the
$tbr and the contents of the trap table are exclusively managed by XtratuM. All native traps jump into
XtratuM routines.

The trap mechanism is used for several purposes:440

Hardware interrupts Used by peripherals to request the attention of the processor.

Software traps Raised by a processor instruction; commonly used to implement the system call mech-
anism in the operating systems.

Processor exceptions Raised by the processor to inform about a condition that prevent the execution
of an instruction. There are basically two kind of exceptions: those caused by the normal445

operation of the processor (such as register window under/overflow), and those caused by an
abnormal situation (such as an memory error).

Printed: March 1, 2011 xm-3-usermanual-022c

2.10. Traces 19/119

XtratuM defines 32 new interrupts called extended interrupts. These new interrupts are used to inform
the partition about XtratuM specific events. Those new traps are vectored at the end of the trap table
(entry trap 224 in the case of the SPARC v8). The trap handler raised by a trap can be changed by 450

invoking the XM route irq() hypercall.

Partitions are not allowed to use (read or write) the $tbr register. XtratuM implements a virtual trap
table.

CPU

Peripherals
Peripherals

Peripherals

Irq Controller

XtratuM

Partition

Health Monitoring Hardware Irqs

Extended IrqsSoftware Traps

0 ff 100 11f11 1f 80

VTrapTable

NIrqs SwTraps VIrqsExceptions

TrapHandlerN(){
 …
}

Exceptions
handled throw the

health monitor.

Scope

XM hm
Table

Parition hm
Table

XM_CF.xml

Figure 2.8: Exceptions handled by the health monitoring subsystem.

2.9.2 Interrupts

Although in a fully virtualised environment, a partition should not need to manage hardware interrupt;
XtratuM only virtualises those hardware peripherals that may endanger the isolation, but leaves to the 455

partitions to directly manage non-critical devices.

In order to properly manage peripherals, a partition needs to:

1. have access to the peripheral control and data registers.

2. be informed about triggered interrupts.

3. be able to block (mask and unmask) the associated interrupt line. 460

A hardware interrupt can only be allocated to one partition (in the XM CF configuration file). The
partition can then mask and unmask the hardware line in the the native interrupt controller using the
XM mask irq() and XM unmask irq() functions.

XtratuM extends the concept of processor traps by adding a 32 additional interrupt numbers. This
new range is used to inform the partition about events detected or generated by XtratuM. 465

Figure 2.9 shows the sequence from the occurrence of an interrupt to the partition’s trap handler.

Partitions shall manage this new set of events in the same way standard traps are. The native trap
table of the LEON3 is extended, appending 32 new trap entries, which will be invoked by XtratuM on
the occurrence of an event alike a standard LEON3 trap.

2.10 Traces

XtratuM provides a mechanism to store and retrieve the traces generated by partitions and XtratuM 470

itself. Traces can be used for debugging, during the development phase of the application, but also to

xm-3-usermanual-022c Printed: March 1, 2011

20/119 Chapter 2. XtratuM Architecture

CPU

Peripherals
Peripherals

Peripherals

Irq Controller

XtratuM

Partition

Health Monitoring Hardware Irqs

Extended IrqsSoftware Traps

0 ff 100 11f11 1f 80

VTrapTable

NIrqs SwTraps VIrqsExceptions

TrapHandlerN(){
 …
}

XM_mask_irq()
XM_unmask_irq()

Hardware interrupt
delivered to

partition.

XM_CF.xml

1..F

CPU

Peripherals
Peripherals

Peripherals

Irq Controller

XtratuM

Partition

Health Monitoring Hardware Irqs

Extended Irqs

Software Traps

0 ff 100 11f11 1f 80

VTrapTable

NIrqs SwTraps VIrqsExceptions

TrapHandlerN(){
 …
}

XM_mask_irq()
XM_unmask_irq()

Extended
interrupts.

Extended bitmask

32..63

Figure 2.9: Hardware and extended interrupts delivery.

CPU

Peripherals
Peripherals

Peripherals

Irq Controller

XtratuM

Partition

Health Monitoring Hardware Irqs

Extended IrqsSoftware Traps

0 ff 100 11f11 1f 80

VTrapTable

NIrqs SwTraps VIrqsExceptions

TrapHandlerN(){
 …
}

Software traps.

PartitionMain(){
 ...
 __asm__ ("ta 0x81”);
 ...
}

CPU

Peripherals
Peripherals

Peripherals

Irq Controller

XtratuM

Partition

Health Monitoring Hardware Irqs

Extended IrqsSoftware Traps

0 ff 100 11f11 1f 80

VTrapTable

NIrqs SwTraps VIrqsExceptions

TrapHandlerN(){
 …
}

Software traps:
Hypercall

XM
service

PartitionMain(){
 ...
 __asm__ ("ta 0x81”);
 ...
}

Figure 2.10: Software traps.

log relevant events during the production phase.

In order to enforce resource isolation, each partition (as well as XtratuM) has a dedicated trace log
stream to store its own trace messages, which is specified in the @device attribute of the Trace element.
Trace is an optional element of XMHypervisor and Partition elements.475

The hypercall to write a trace message has a parameter (bitmask) used to select the traces messages
are stored in the log stream. The integrator can select which trace messages are actually stored in
the log stream with the Trace/@bitmask attribute. If the logical and between the value configured in
the Partition/Trace/@bitmask and the value of the bitmask parameter of the XM trace event()

hypercall, then the event is stored, otherwise it is discarded.480

Figure 2.11 sketches the configuration of the traces. In the example, the traces generated by partition
1 will be stored in the device MemDisk0, which is defined in the Devices section as a memory block
device. Only those traces whose least significant bit is set in the bitmask parameter will be recorded.

2.11 Clocks and timers

There are two clocks per partition:

Printed: March 1, 2011 xm-3-usermanual-022c

2.12. Status 21/119

XtratuM
trace systemXtratuM

Monitoring
Partitiont

Trace
stream

Partition 1 Partition 2

Trace
stream

Trace
stream

XM_trace_event(event, bitmask)
XM_trace_open()
XM_trace_read()
XM_trace_seek()

XM_CF.xml
....
 <Partition id=”1”>

<trace bitmask=”0x01” device=”MemDisk0”/>
 </Partition>
<Devices>
 <MemoryBlockTable>
 <Block name="MemDisk0" start="0x40100000"

 size="256KB" />
 </MemoryBlockTable>
 </Devices>
...

&If ()

Figure 2.11: Tracing overview.

XM HW CLOCK: Associated with the native hardware clock. The resolution is 1µsec. 485

XM EXEC CLOCK: Associated with the execution of the partition. This clock only advances while the
partition is being executed. It can be used by the partition to detect overruns. This clock relies on
the XM HW CLOCK and its resolution is also 1µsec.

Only one timer can be armed for each clock.

2.12 Status

Relevant internal information regarding the current state of the XtratuM and the partitions, as well as 490

accounting information is maintained in an internal data structure that can be read by system partitions.

This optional feature shall be enabled in the XtratuM source configuration, and then recompile the
XtratuM code. By default it is disabled. The hypercall is always present; but if not enabled, then
XtratuM does not gather statistical information and then some status information fields are undefined.
It is enabled in the XtratuM menuconfig: Objects→ XM partition status accounting. 495

XtratuM

Monitoring
Partitiont

Partition 1 Partition 2

XM_status_open(), XM_status_read()

Partition1
status

structure

Partition2
status

structure

XtratuM
status

structure

Figure 2.12: Status overview.

xm-3-usermanual-022c Printed: March 1, 2011

22/119 Chapter 2. XtratuM Architecture

2.13 Summary

Next is a brief summary of the ideas and concepts that shall be kept in mind to understand the internal
operation of XtratuM and how to use the hypercalls:

• A partition behaves basically as the native computer. Only those services that have been explicitly
para-virtualised should be managed in a different way.

• Partition’s code should not be self-modifying.500

• Partition’s code is always executed with native interrupts enabled.

• Partition’s code is not allowed to disable native interrupts, only their own virtual interrupts.

• XtratuM code is non-preemptive. It should be considered as a single critical section.

• Partitions are scheduled by using a predefined scheduling cyclic plan.

• Inter-partition communication is done through messages.505

• There are two kind of virtual communication devices: sampling ports and queuing ports.

• All hypercall services are non-blocking.

• Regarding the capabilities of the partitions, XtratuM defines two kind of partitions: system and
standard.

• Only system partitions are allowed to control the state of the system and other partitions, and to510

query about them.

• XtratuM is configured off-line and no dynamic objects can be added at run-time.

• The XtratuM configuration file (XM CF) describes the resources that are allowed to be used by
each partition.

• XtratuM provides a fine grain error detection and a coarse grain fault management.515

• It is possible to implement advanced fault analysis techniques in system partitions.

• An I/O Server partition can handle a set of devices used by several partitions.

• XtratuM implements a highly configurable health monitoring and handling system.

• The logs reported by the health monitoring system can be retrieved and analysed by a system
partition online.520

• XtratuM provides a tracing service that can be used to both debug partitions and online monitor-
ing.

• The same tracing mechanism is used to handle partition and XtratuM traces.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Chapter 3

Developing Process Overview

XtratuM is a layer of software that extends the capabilities of the native hardware. There are important
differences between a classical system and an hypervisor based one. This chapter provides an overview 525

of the XtratuM developing environment.

The simplest scenario is composed of two actors: the integrator and two partition developer or partition
supplier. There shall be only one integrator team and one or more partition developer teams (in what
follows, we will use “integrator” and “partition developer” for short).

The tasks to be done by the integrator are: 530

1. Configure the XtratuM source code (jointly with the resident software). Customise it for the target
board (processor model, etc.) and a miscellaneous set of code options and limits (debugging,
identifiers length, etc.). See section 8.1 for a detailed description.

2. Build XtratuM: hypervisor binary, user libraries and tools.

3. Distribute the resulting binaries to the partition developers. All partition developers shall use the 535

same binary version of XtratuM.

4. Allocate the available system resources to the partitions, according to the resources required to
execute each partition:

• memory areas where each partition will be executed or can use,

• design the scheduling plan, 540

• communication ports between partitions,

• the virtual devices and physical peripherals allocated to each partition,

• configure the health monitoring,

• etc.

By creating the XM CF configuration file1. See section 8.3 for a detailed description. 545

5. Gather the partition images and customisation files from partition developers.

6. Pack all the files (resident software, XtratuM binary, partitions, and configuration files) into the
final system image.

The partition developer activity:

1. Define the resources required by its application, and send it to the integrator. 550

1Although it is not mandatory to name “XM CF” the configuration file, we will use this name in what follows for simplicity.

23/ 119

24/119 Chapter 3. Developing Process Overview

: Integrator : Partition Developer1

2: Configura & Build

3: Install & Create a Distribution

5: Build Execution Environment

6: Develop Application

7: Build Partition Image

8: Send Partition Image

9: Pack the System

4: Distribution + XM_CF

10: Deploy & Run

1: Required resources

Figure 3.1: Integrator and partition developer interactions.

2. Prepare the development environment. Install the binary distribution created by the integrator.

3. Develop the partition application, according to the system resources agreed by the integrator.

4. Deliver to the integrator the resulting partition image and the required customisation files (if
any).

There should be an agreement between the integrator and the partition developers on the resources555

allocated to each partition. The binaries, jointly with the XM CF configuration file defines the partitioned
system. All partition developers shall use exactly the same XtratuM binaries and configuration
files during the development. Any change on the configuration shall be agreed with the integrator.

Since the development of the partitions may be carried out in parallel (or due to intellectual property
restrictions), the binary image of some partitions may not be available to a partition developer team. In560

this case, it is advisable to use dummy partitions to replace those non-available, rather than changing
the configuration file.

3.1 Development at a glance

zj1 The first step is to buid the hypervisor binaries. The integrator shall configure and compile the
XtratuM sources to produce:

xm core.xef: The hypervisor image which implements the support for partition execution.565

libxm.a: A helper library which provides a “C” interface to the para-virtualised services via the
hypercall mechanism.

xmc.xsd: The XML schema specification to be used in the XM CF configuration file.

Printed: March 1, 2011 xm-3-usermanual-022c

3.2. Building XtratuM 25/119

Build

xmcparser

xmpack

XtratuM
Source Code

Partition 1
Source code

Build
executable

binary

Partition1.xef

XtratuM
Binary

Distributionxmcparser

Partition 2
Source code

Build
executable

binary

Partition2.xef

XM_CT.bin

.config

autoconfig.h

Source code
Configuration
(menuconfig)

1

2

XtratuM
Binary

Distribution

3

Custom_CT 2

Partition2.xef

Custom_CT 1

Partition1.xef

XM_CT.xef

xm_core.xef

xmefPackageHeader

4

XM_CF.xmlxmc.xsd

XtratuM
Binary

Distribution

xmcparser

rswbuild

5

Figure 3.2: The big picture of building a XtratuM system.

tools: A set of tools to manage the partition images and the XM CF file.

The result of the build process can be prepared to be delivered to the partition developers as a 570

binary distribution.

zj2 The next step is to define the hypervisor system and resources allocated to each partition. This is
done by creating the configuration file XM CF file.

zj3 Using the binaries resulted from the compilation of XtratuM and the system configuration file,
partition developers can implement and test its own partition code by their own. 575

zj4 The tool xmpack is used to build the complete system (hypervisor plus partitions code). The result
is a single file called container. Partition developers shall replace the image of non-available
partitions by a dummy partition. Up to three, customisation files can be attached to each partition.

zj5 The container shall be loaded in the target system using the corresponding resident software (or
boot loader). For convenience, a resident software is provided. 580

3.2 Building XtratuM

In the first stage, XtratuM shall be tailored to the hardware available on the board, and the ex-
pected workload. This configuration parameters will be used in the compilation of the XtratuM code
to produce a compact and efficient XtratuM executable image. Parameters like the processor model or
the memory layout of the board are configured here (see section 8.1).

xm-3-usermanual-022c Printed: March 1, 2011

26/119 Chapter 3. Developing Process Overview

xmeformat

.config

autoconfig.h

Build

libxm.a xm_core

XtratuM
Source Code

xmc.xsd
xmcparser

xmpack

Figure 3.3: Menuconfig process.

The configuration interface is the same than the one known as “menuconfig” used in the Linux kernel,585

see figure 3.3. It is a ncurses-based graphic interface to edit the configuration options. The selected
choices are stored in two files: a “C” include file named “core/include/autoconf.h”; and a makefile
include file named “core/.config”. Both files contain the same information but with different syntax
to be use “C” programs and the in Makefiles respectively.

Although it is possible to edit these configuration files,with a plain text editor, it is advisable not to do590

so; since both files shall be synchronized.

Once configured, the next step is to build XtratuM binaries, which is done calling the command make.

Ideally, configuring and compiling XtratuM should be done at the initial phases of the design and
should not be changed later.

The build process leaves the objects and executables files in the sources directory. Although it is595

possible to use these files directly to develop partitions it is advisable to install the binaries in a separate
read-only directory to avoid accidental modifications of the code. It is also possible to build a TGZ2

package with all the files to develop with XtratuM, which can be delivered to the partition developers.
See chapter 4.

3.3 System configuration

The integrator, jointly with the partition developers, have to define the resources allocated to each600

partition, by creating the XM CF file. It is an XML file which shall be a valid XML against the XMLSchema
defined in section 8.3. Figure 3.4 shows a graphical view of the configuration schema.

The main information contained in the XM CF file is:

Memory: The amount of physical memory available in the board and the memory allocated to each
partition.605

2TGZ: Tar Gzipped archive.

Printed: March 1, 2011 xm-3-usermanual-022c

3.4. Compiling partition code 27/119

Processor: How the processor is allocated to each partition: the scheduling plan.

Peripherals: Those peripherals not managed by XtratuM can be used by one partition. The I/O port
ranges and the interrupt line if any.

Health monitoring: How the detected errors are managed by the partition and XtratuM: direct action,
delivered to the offending partition, create a log entry, reset, etc. 610

Inter-partition communication: The ports that each partition can use and the channels that link the
source and destination ports.

Tracing: Where to store trace messages and what messages shall be traced.

Since XM CF defines the resources allocated to each partition, this file represents a contract between the
integrator and the partition developers. A partner (the integrator or any of the partition developers) 615

should not change the contents of the configuration file on its own. All the partners should be aware
of the changes and should agree in the new configuration in order to avoid problems later during the
integration phase.

: Integrator : Partition Developer1

2: Configura & Build

3: Install & Create a Distribution

5: Build Execution Environment

6: Develop Application

7: Build Partition Image

8: Send Partition Image

9: Pack the System

4: Distribution + XM_CF

10: Deploy & Run

1: Required resources

Figure 3.4: Graphical representation of an XML configuration file.

In order to reduce the complexity of the XtratuM hypervisor, the XM CF is parsed and translated into a
binary format which can be directly used by XtratuM. The XML data is translated into a set of initialised 620

data structures ready to be used by XtratuM. Otherwise, XtratuM will need to contain an XML parser to
read the XM CF information. See section /refxmcparser.

The resulting configuration binary will be passed to XtratuM as a “customisation” file.

3.4 Compiling partition code

Partition developers should use the XtratuM user library (named libxm.a which has been generated
during the compilation of the XtratuM source code) to access the para-virtualised services. The resulting 625

xm-3-usermanual-022c Printed: March 1, 2011

28/119 Chapter 3. Developing Process Overview

binary image of the partition shall be self-contained, that is, it shall not contain linking information.
The ABI of the partition binary is described in section 6.

In order to be able to run the partition application, each partition developer require the following
files:

libxm.a: Para-virtualised services. The include files are distributed jointly with the library, and they630

should be provided by the integrator.

XM CF.xml: The system configuration file. This file describes the whole system. The same file should
be used by all the partners.

xm core.bin: The hypervisor executable. This file is also produced by the integrator, and delivered to
the other partners.635

xmpack: The tool that packs together, into a single system image container, all the components.

xmeformat: For converting an ELF file into an XEF one.

xmcparser: The tool to translate the configuration file (XM CF.xml) into a “C” file which sould be
compiled to produce the configuration table (XM CT).

Partition developer should use an execution environment as close as possible to the final system: the640

same processor board and the same hypervisor framework. To achieve this goal, they should use the
same configuration file than the one used by the integrator. But the code of other partitions may be
replaced by dummy partitions. This dummy partition code executes just a busy loop to waste time.

3.5 Passing parameters to the partitions: customisation files

User data can be passed to each partition at boot time. This information is passed to the partition via
the customisation files.645

It is possible to attach up to three customisation files for partition. The content of each customisation
file is copied into the partition memory space at boot time (before the partition boots). The buffer
where each customisation file is loaded is specified in the partition header. See section 6.

This is the mechanism used by XtratuM to get the compiled XML system configuration.

3.6 Building the final system image

In order to ensure that each partition does not depend on, or affects other partitions or the hypervisor,650

due to shared symbols. The partition binary is not an ELF file. It is a custom format file (called XEF)
which contains the machine code and the initialized data. See section 6.

The container is a single file which contains all the code, data and configuration information that will
be loaded in the target board. In the context of the container, a component refers to the set of files that
are part of an execution unit (which can be a partition or the hypervisor itself). xmpack is a program655

that reads all the executable images (XEF files) and the configuration/customisation files and produces
the container.

The container is not a bootable code. That is, it is like a “tar” file which contains a set of files. In order
to be able to start the partitioned system, a boot loader shall load the content of the container into the
corresponding partition addresses. The utility rswbuild creates an bootable ELF file with the resident660

software and the container.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Chapter 4

Building XtratuM

4.1 Developing environment

XtratuM has been compiled and tested with the following package versions:

Package Version Linux package name Purpose

host gcc 4.2.3 / 4.4.3 gcc-4.2 req Build host utilities
make 3.81-3build1 make req Core
libncurses 5.7+20100313-5 libncurses5-dev req Configure source code
binutils 2.18.1build1 / 2.20.1 binutils req Core
sparc-toolchain linux-3.4.4 req Core
libxml2 2.6.27 / 2.7.6 libxml2-dev req Configuration parser
tsim 2.0.10 / 2.0.15 opt Simulated run
grmon 1.1.31 opt Deploy and run
perl 5.8.8-12 / 5.10.1 opt Testing
makeself 2.1.5 makeself opt Build self extracting distribution

Packages marked as “req” are required to compile XtratuM. Those packages marked as “opt” are
needed to compile or use it in some cases. 665

4.2 Compile XtratuM Hypervisor

It is not required to be supervisor (root) to compile and run XtratuM.

The first step is to prepare the system to compile XtratuM hypervisor.

1. Check that the GNU LIBC Linux GCC 3.4.4 toolchain for SPARC LEON is installed in the system.
It can be downloaded from: http://www.gaisler.com sparc-linux-3.4.4-x.x.x.tar.bz2

2. Make a deep clean to be sure that there is not previous configurations:

$ make distclean

3. In the root directory of XtratuM, copy the file xmconfig.sparc into xmconfig, and edit it to meet 670

your system paths. The variable XTRATUM PATH shall contain the root directory of XtratuM. Also,
if the sparc-linux toolchain directory is not in the PATH then the variable TARGET CCPREFIX shall

29/ 119

http://www.gaisler.com

30/119 Chapter 4. Building XtratuM

contain the path to the actual location of the corresponding tools. The prefix of the SPARC v8
tool chain binaries, shall be “sparc-linux-”; otherwise, edit also the appropiate variables.

In the seldom case that the host toolchain is not in the PATH, then it shall be specified in the
HOST CCPREFIX variable.

$ cp xmconfig.sparc xmconfig

$ vi xmconfig

4. Configure the XtratuM sources. The ncurses5 library is required to compile the configuration675

tool. In a Debian system with internet connection, the required library can be installed with the
following command: sudo apt-get install libncurses5-dev.

The configuration utility is executed (compiled and executed) with the next command:

$ make menuconfig

Note: The menuconfig target configures the XtratuM source code and the resident software.
Therefore, two different configuration menus are presented, see section 8.1.

For running XtratuM in the simulator, select the appropriate processor model from the menuconfig680

menus.

5. Compile XtratuM sources:

$ make

> Configuring and building the "XtratuM hypervisor"

> Building XM Core

- kernel/sparcv8

- kernel/mmu

- kernel

- klibc

- klibc/sparcv8

- objects

- drivers

> Linking XM Core

text data bss dec hex filename

61949 152 81112 143213 22f6d xm_core

de1daa3d40e5a2171d0b16c6fbbf3c6e xm_core.xef

> Done

> Configuring and building the "User utilities"

> Building XM user

- libxm

- libxef

- tools

- tools/xmpack

- tools/xmcparser

- tools/xmgcov

- tools/xmbuildinfo

- tools/rswbuild

- tools/xmcbuild

- tools/xef

- xal

- bootloaders/rsw

> Done

Printed: March 1, 2011 xm-3-usermanual-022c

4.3. Generating binary a distribution 31/119

4.3 Generating binary a distribution

The generated files from the compilation process are in source code directories. In order to distribute
the compiled binary version of XtratuM to the partition developers, a distribution package shall be
generated. There are two distribution formats:

Tar file: It is a compressed tar file with all the XtratuM files and an installation script.

$ make distro-tar

Self-extracting installer: It is a single executable file which contains the distribution and the installa-
tion script.

$ make distro-run

The final installation is exactly the same regarding the distribution format used. 685

$ make distro-run

.......

> Installing XM in "/tmp/xm-distro.21476/xtratum-3.1.2/xm"

- Generating XM sha1sums

- Installing XAL

- Generating XAL sha1sums

- Installing XM examples

- Generating XM examples sha1sums

- Setting read-only (og-w) permission.

> Done

> Generating XM distribution "xtratum-3.1.2.tar.bz2"

> Done

> Generating self extracting binary distribution "xtratum-3.1.2.run"

> Done

The files xtratum-x.x.x.tar.bz2 or xtratum-x.x.x.run contains all the files requires to work (de-
velop and run) with the partitioned system. This tar file contains two root directories: xal and xm, and
an installation script.

The directory xm contains the XtratuM kernel and the associated developer utilities. Xal stands for
XtratuM Abstraction Layer, and contains the partition code to setup a basic “C” execution environment. 690

Xal is provided for convenience, and it is not mandatory to use it. Xal is only useful for those partitions
with no operating system.

Although XtratuM core and related libraries are compiled for the LEON3 processor, some of the host
configuration and deploying tools (xmcparser, xmpack and xmeformat) are host executables. If the
computer where XtratuM was compiled on and the computer where it is being installed are different 695

processor architectures (32bit and 64bit), the tools may not run properly.

4.4 Installing a binary distribution

Decompress the xtratum-x.x.x.tar.bz2 file is a temporal directory, and execute the install script.
Alternatively, if the distributed file is xtratum-x.x.x.run then just execute it.

The install script requires only two parameters:

xm-3-usermanual-022c Printed: March 1, 2011

32/119 Chapter 4. Building XtratuM

xal/

include/ bin/ common/ lib/

INSTALL_PATH

xal-examples/ xm-examples/ xm/

include/ bin/ lib/

arch/ xm_inc/

drivers/ arch/ objects/

bootloaders/

rsw/

sparcv8/

Figure 4.1: Content of the XtratuM distribution.

1. The installation path.700

2. The path to the SPARC v8 toolchain.

Note that it is assumed that the host toolchain binaries can be located in the PATH variable. It is
necessary to provide again the path to the LEON3 toolchain because it may be located in a different
place than in the system where XtratuM was build. In any case, it shall be the same version, than the
one used to compile XtratuM.705

$./xtratum-3.1.2.run

Verifying archive integrity... All good.

Uncompressing XtratuM binary distribution 3.1.2:......

Starting installation.

Installation log in: /tmp/xtratum-installer.log

1. Select the directory where XtratuM will be installed. The installation

directory shall not exist.

2. Select the target compiler toolchain binary directory (arch sparc).

The toolchain shall contain the executables named sparc-linux-*.

3. Confirm the installation settings.

Important: you need write permision in the path of the installation directory.

Continue with the installation [Y/n]? Y

Press [Enter] for the default value or enter a new one.

Press [TAB] to complete directory names.

1.- Installation directory [/opt]: /home/xmuser/xm2env

2.- Path to the sparc toolchain [/opt/sparc-linux-3.4.4/bin/]: /opt/sparc-linux/bin

Confirm the Installation settings:

Selected installation path : /home/xmuser/xm2env

Selected toolchain path : /opt/sparc-linux/bin

Printed: March 1, 2011 xm-3-usermanual-022c

4.5. Compile the Hello World! partition 33/119

3.- Perform the installation using the above settings [Y/n]? Y

Installation completed.

Listing 4.1: Output of the self-executable distribution file.

4.5 Compile the Hello World! partition

1. Change to the INSTALL PATH/xm-examples/hello world directory.

2. Compile the partition:

$ make

.....

Created by "iripoll" on "fredes" at "Wed Feb 3 13:21:02 CET 2010"

XM path: " /home/xmuser/xm2env/xm"

XtratuM Core:

Version: "3.1.2"

Arch: "sparcv8"

File: "/home/xmuser/xm2env/xm/lib/xm_core.xef"

Sha1: "962b930e8278df873599e6b8bc4fcb939eb92a19"

Changed: "2010-02-03 13:19:51.000000000 +0100"

XtratuM Library:

Version: "3.1.2"

File: "/home/xmuser/xm2env/xm/lib/libxm.a"

Sha1: "46f64cf2510646833a320e1e4a8ce20e4cd4e0a9"

Changed: "2010-02-03 13:19:51.000000000 +0100"

XtratuM Tools:

File: "/home/xmuser/xm2env/xm/bin/xmcparser"

Sha1: "8fa5dea03739cbb3436d24d5bc0e33b20906c47a"

Note that the compilation is quite verbose: the compilation commands, messages, detailed infor-
mation about the tools libraries used, etc. are printed.

The result from the compilation is a file called “resident sw”.

3. To run this file just load it in the tsim or grmon and run (go) it: 710

$ tsim-leon3 -mmu

...

serial port A on stdin/stdout

allocated 4096 K RAM memory, in 1 bank(s)

allocated 16 M SDRAM memory, in 1 bank

allocated 2048 K ROM memory

icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)

dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)

tsim> load resident_sw

section: .text, addr: 0x40200000, size 14340 bytes

section: .rodata, addr: 0x40203808, size 790 bytes

section: .container, addr: 0x40203b20, size 48888 bytes

section: .got, addr: 0x4020fa18, size 8 bytes

xm-3-usermanual-022c Printed: March 1, 2011

34/119 Chapter 4. Building XtratuM

section: .eh_frame, addr: 0x4020fa20, size 64 bytes

read 38 symbols

tsim> go

resuming at 0x40200d24

XM Hypervisor (3.1 r2)

Detected 50.0MHz processor.

>> HWClocks [LEON clock (1000Khz)]

[CPU:0] >> HwTimer [LEON timer (1000Khz)]

[CPU:0] [sched] using cyclic scheduler

2 Partition(s) created

P0 ("Partition1":0) flags: [SYSTEM BOOT (0x40080000)]:

[0x40080000 - 0x400fffff]

P1 ("Partition2":1) flags: [SYSTEM BOOT (0x40100000)]:

[0x40100000 - 0x4017ffff]

Jumping to partition at 0x40082000

Jumping to partition at 0x40102000

I am Partition2

Hello World!

I am [CPU:0] [HYPERCALL] (0x1) Halted

Partition1

Hello World!

[CPU:0] [HYPERCALL] (0x0) Halted

4.6 XtratuM directory tree

sources_sparcv8

|-- core/

| |-- drivers/

| |-- include/

| |-- kernel/715

| |-- klibc/

| |-- objects/

| |-- build.info

| |-- Kconfig.ver

| |-- Makefile720

| |-- rules.mk

| |-- xm_core

| \-- xm_core.xef

|-- docs/

| \-- COPYING725

|-- scripts/

| |-- kconfig/

| |-- asm-offsets.c

| |-- asm-offsets.sh*

| |-- erratack.pl*730

| |-- extractinfo*

| |-- extractinfo.c

| \-- gencomp.pl*

|-- user/

| |-- bin/735

| |-- bootloaders/

| |-- examples/

| |-- libxef/

| |-- libxm/

| |-- tools/740

| |-- xal/

| |-- install.mk

| |-- Makefile

| \-- rules.mk

|-- Changelog745

|-- config.mk

|-- Makefile

|-- README

|-- version

|-- xmconfig750

\-- xmconfig.sparc

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Chapter 5

Partition Programming

This chapter explains how to build a XtratuM partition: partition developer tutorial.

5.1 Implementation requirements

Below is a checklist of what the partition developer and the integrator should take into accout when
using XtratuM. It is advisable to revisit this list to avoid incorrect assumptions.

Development host: If the computer where XtratuM was compiled on and the computer where it is 755

being installed are different processor architectures (32bit and 64bit), the tools may not run
properly.

Check that the executable files in xm/bin are compatible with the host architecture.

Para-virtualised services: Partition’s code shall use the para-virtualised services. The use of native
services is considered an error and the corresponding error will be raised. 760

PIT and PCT: In the case of corrupting the Partition Control Table, the result on the faulting partition
is undefined. The rest of the partitions are not affected.

Store ordering: XtratuM has been implemented considering that the LEON2 processor is operating in
TSO (Total Store Ordering) mode. This is the standard SPARC v8 working mode. If changed to
PSO (Partial Store Ordering) mode then random errors will happen. 765

Memory allocation:

• Care shall be taken to avoid overlapping the memory allocated to each partition.

• If MMU in not used, then the partition code shall be linked to work on the allocated memory
areas. If the memory allocated in the XM CF file is changed, then the linker script of the
affected partition shall be updated accordingly. 770

Reserved names: The prefix “xm”, both in upper and lower case, is reserved for XtratuM identifiers.

Stack management: XtratuM manages automatically the register window of the partitions. The par-
tition code is responsible of initialising the stack pointer to a valid memory area, and reserve
enough space to accommodate all the data that will be stored in the stack. Otherwise, an stack
overflow may occur. 775

Data Alignment: By default, all data structures passed to or shared with XtratuM shall by aligned to 8
bytes.

35/ 119

36/119 Chapter 5. Partition Programming

Units definition and abbreviations:

“KB” (KByte or Kbyte) is equal to 1024 (210) bytes.

“Kb” (Kbit) is equal to 1024 (210) bits.780

“MB” (MByte or Mbyte) is equal to 1048576 (1024 · 1024 = 220) bytes.

“Mb” (Mbit) is equal to 1048576 (1024 · 1024 = 220) bits.

“Khz” (Kilo Hertz) is equal to 1000 hertzs.

“Mhz” (Mega Hertz) is equal to 1000.000 hertzs.

XtratuM memory footprint: XtratuM does not use dynamic memory allocation. Therefore, all internal785

data structures are declared statically. The size of these data structures are defined during the
source code configuration process.

The following configuration parameters are the ones the have an impact on the memory needed
by XtratuM:

Maximum identifier length: Defines the space reserved to store the names of the partitions,790

ports, scheduling slots and channels.

Kernel stack size: For each partition, XtratuM reserves a kernel stack. Do not reduce the value
of this parameter unless you know the implications.

Partition memory areas (if the WPR is used) : Due to the hardware device (WPR) used to force mem-
ory protection, the area of memory allocated to the partitions shall fulfil the next conditions:795

• The size shall be greater than or equal to 32KB.

• The size shall be a power or two.

• The start address shall be a multiple of the size.

Configuration of the resident software (RSW): The information contained in the XM CF regarding800

the RSW is not used to configure the RSW itself. That information is used:

• by XtratuM to perform a system cold reset,

• and by the xmcparser to check for memory overlaps.

Partition declaration order: The partition elements, in the XM CF file, shall be ordered by “id”, and
the id’s shall be consecutive starting in zero.805

5.2 XAL development environment

XAL is a minimal developing environment to create bare “C” applications. It is provided jointly with the
XtratuM core. Currently it is only the minimal libraries and scripts to compile and link a “C” application.
More features will added in the future (mathematic lib, etc.).

In the previous versions of XtratuM, XAL was included as part of the examples of XtratuM. It has been
moved outside the tree of XtratuM to create an independent developer environment.810

When XtratuM is installed, the XAL environment is also installed. It is included in the target directory
of the installation path.

target_directory

|-- xal # XAL components

|-- xal-examples # examples of XAL use

|-- xm

Printed: March 1, 2011 xm-3-usermanual-022c

5.2. XAL development environment 37/119

‘-- xm-examples

Listing 5.1: Installation tree.

The XAL subtree contains the following elements:

xal

|-- bin # utilities

| |-- xpath

| ‘-- xpathstart

|-- common # compilation rules

| |-- config.mk

| |-- config.mk.dist

| ‘-- rules.mk

|-- include # headers

| |-- arch

| | ‘-- irqs.h

| |-- assert.h

| |-- autoconf.h

| |-- config.h

| |-- ctype.h

| |-- irqs.h

| |-- limits.h

| |-- stdarg.h

| |-- stddef.h

| |-- stdio.h

| |-- stdlib.h

| |-- string.h

| ‘-- xal.h

|-- lib # libraries

| |-- libxal.a

| ‘-- loader.lds

‘-- sha1sum.txt

Listing 5.2: XAL subtree.

A XAL partition can:

• Be specified as ”system” or ”user”. 815

• Use all the XtratuM hypercalls according to the type of partition.

• Use the standard input/output “C” functions: printf, sprintf, etc. The available functions are
defined in the include/stdio.h.

• Define interrupt handlers and all services provided by XtratuM.

An example of a XAL partition is 820

#include <xm.h>

#include <stdio.h>

#define LIMIT 100

void SpentTime(int n) {

int i,j;

int x,y = 1;

for (i= 0; i <=n; i++) {

for (j= 0; j <=n; j++) {

xm-3-usermanual-022c Printed: March 1, 2011

38/119 Chapter 5. Partition Programming

x = x + x - y;

}

}

}

void PartitionMain(void) {

long counter=0;

printf("[P%d] XAL Partition \n",XM_PARTITION_SELF);

counter=1;

while(1) {

counter++;

SpentTime(2000);

printf("[P%d] Counter %d \n",XM_PARTITION_SELF, counter);

}

XM_halt_partition(XM_PARTITION_SELF);

}

Listing 5.3: XAL partition example.

In the xal-examples subtree, the reader can find several examples of XAL partitions and how these
examples can be compiled. Next is shown the Makefile file.

XAL_PATH: path to the XTRATUM directory

XAL_PATH=/......./xal

XMLCF: path to the XML configuration file

XMLCF=xm_cf.sparcv8.xml

PARTITIONS: partition files (xef format) composing the example

PARTITIONS=partition1.xef partition2.xef

all: container.bin resident_sw

include $(XAL_PATH)/common/rules.mk

partition1: dummy_xal.o

$(LD) -o $@ $^ $(LDFLAGS) -Ttext=$(call xpathstart,1,$(XMLCF))

......

PACK_ARGS=-h $(XMCORE):xm_cf.xef.xmc \

-p 0:partition1.xef\

-p 1:partition2.xef\

.....

container.bin: $(PARTITIONS) xm_cf.xef.xmc

$(XMPACK) check xm_cf.xef.xmc $(PACK_ARGS)

$(XMPACK) build $(PACK_ARGS) $@

@exec echo -en "> Done [container]\n"

Listing 5.4: Makefile.

5.3 Partition definition

A partition is an execution environment managed by the hypervisor which uses the virtualised services.

Each partition consists of one or more concurrent processes (implemented by the operating system of

Printed: March 1, 2011 xm-3-usermanual-022c

5.4. The “Hello World” example 39/119

each partition), sharing access to processor resources based upon the requirements of the application. 825

The partition code can be:

• An application compiled to be executed on a bare-machine (bare-application).

• A real-time operating system and its applications.

• A general purpose operating system and its applications.

Partitions need to be virtualised to be executed on top of XtratuM. For instance, the partitions cannot 830

manage directly the hardware interrupts (enable/disable interrupts) which have to be replaced by
hypercalls1 to ask for the hypervisor to enable/disable the interrupts.

Depending on the type of execution environment, the virtualisation implies:

Bare application The application has to be virtualised using the services provided by XtratuM. The
application is designed to run directly on the hardware and it has to be aware about it. 835

Operating system application When the application runs on top of a (real-time) operating system, it
uses the services provided by the operating system and does not need to be virtualised. But the
operating system has to deal with the virtualisation. The operating system has to be virtualised
(ported on top of XtratuM).

5.4 The “Hello World” example

Let’s start with a simple code that is not ready to be executed on XtratuM and needs to be adapted. 840

void main() {

int counter =0;

xprintf(‘‘Hello World!\n’’);

while(1) {

counter++;

counter %= 100000;

}

}

Listing 5.5: Simple example.

The first step is to initialise the virtual execution environment and call the entry point (PartitionMain
in the examples) of the partition. The following files are provided as an example of how to build the
partition image and initialise the virtual machine.

boot.S: The assembly code where the headers and the entry point are defined.

traps.c: Required data structures: PCT and trap handlers. 845

std c.c, std c.h: Minimal “C” support as mencpy, xprintf, etc.

loader.lds: The linker script that arranges the sections to build the partition image layout.

The boot.S file:

1para-virtualised operations provided by the hypervisor

xm-3-usermanual-022c Printed: March 1, 2011

40/119 Chapter 5. Partition Programming

1 #include <xm.h>

2 #include <xm_inc/arch/asm_offsets.h>

3 //#include <xm_inc/hypercalls.h>

4
5 #define STACK_SIZE 8192

6 #define MIN_STACK_FRAME 0x60

7
8 .text

9 .align 8

10
11 .global start, _start

12
13 _start:

14 start:

15 /* Zero out our BSS section. */

16 set _sbss, %o0

17 set _ebss, %o1

18
19 1:

20 st %g0, [%o0]

21 subcc %o0, %o1, %g0

22 bl 1b

23 add %o0, 0x4, %o0

24
25 set __stack_top, %fp

26
27 mov %g1, %o0

28 call init_libxm

29 sub %fp, MIN_STACK_FRAME, %sp

30 ! Set up TBR

31 set write_register32_nr, %o0

32 mov %g0, %o1

33 set _traptab, %o2

34 __XM_HC

35
36 call PartitionMain

37 sub %fp, MIN_STACK_FRAME, %sp

38
39 set 0xFFFFF000, %o0

40 ld [%o0 + 0x1c], %o1

41 mov halt_partition_nr, %o0

42 __XM_HC

43
44 1: b 1b

45 nop

46
47 ExceptionHandlerAsm:

48 mov sparcv8_get_psr_nr, %o0

49 __XM_AHC

50 mov %o0, %l0

51 ! set sparcv8_flush_regwin_nr, %o0

52 ! __XM_AHC

53 sub %fp, 48, %fp

54 std %l0, [%fp+40]

55 std %l2, [%fp+32]

56 std %g6, [%fp+24]

57 std %g4, [%fp+16]

58 std %g2, [%fp+8]

59 st %g1, [%fp+4]

60 rd %y, %g5

61 st %g5, [%fp]

62
63 mov %l5, %o0

64 call ExceptionHandler

65 sub %fp, 0x80, %sp

66 ld [%fp], %g1

67 wr %g1, %y

68 ld [%fp+4], %g1

69 ldd [%fp+8], %g2

70 ldd [%fp+16], %g4

71 ldd [%fp+24], %g6

72 ldd [%fp+32], %l2

73 ldd [%fp+40], %l0

74 add %fp, 48, %fp

75 mov %l0, %o1

76 mov sparcv8_set_psr_nr, %o0

77 __XM_AHC

78 set sparcv8_iret_nr, %o0

79 __XM_AHC

80
81 ExtIrqHandlerAsm:

82 mov sparcv8_get_psr_nr, %o0

83 __XM_AHC

84 mov %o0, %l0

85 ! set sparcv8_flush_regwin_nr, %o0

86 ! __XM_AHC

87 sub %fp, 48, %fp

88 std %l0, [%fp+40]

89 std %l2, [%fp+32]

90 std %g6, [%fp+24]

91 std %g4, [%fp+16]

92 std %g2, [%fp+8]

93 st %g1, [%fp+4]

94 rd %y, %g5

95 st %g5, [%fp]

96 mov %l5, %o0

97 call ExtIrqHandler

98 sub %fp, 0x80, %sp

99 ld [%fp], %g1

100 wr %g1, %y

101 ld [%fp+4], %g1

102 ldd [%fp+8], %g2

103 ldd [%fp+16], %g4

104 ldd [%fp+24], %g6

105 ldd [%fp+32], %l2

106 ldd [%fp+40], %l0

107 add %fp, 48, %fp

108 mov %l0, %o1

109 mov sparcv8_set_psr_nr, %o0

110 __XM_AHC

111 set sparcv8_iret_nr, %o0

112 __XM_AHC

113
114 HwIrqHandlerAsm:

115 mov sparcv8_get_psr_nr, %o0

116 __XM_AHC

117 mov %o0, %l0

118 ! set sparcv8_flush_regwin_nr, %o0

119 ! __XM_AHC

120 sub %fp, 48, %fp

121 std %l0, [%fp+40]

122 std %l2, [%fp+32]

123 std %g6, [%fp+24]

124 std %g4, [%fp+16]

125 std %g2, [%fp+8]

126 st %g1, [%fp+4]

127 rd %y, %g5

128 st %g5, [%fp]

129 mov %l5, %o0

130 call HwIrqHandler

131 sub %fp, 0x80, %sp

132
133 ld [%fp], %g1

134 wr %g1, %y

135 ld [%fp+4], %g1

136 ldd [%fp+8], %g2

Printed: March 1, 2011 xm-3-usermanual-022c

5.4. The “Hello World” example 41/119

137 ldd [%fp+16], %g4

138 ldd [%fp+24], %g6

139 ldd [%fp+32], %l2

140 ldd [%fp+40], %l0

141 add %fp, 48, %fp

142 mov %l0, %o1

143 mov sparcv8_set_psr_nr, %o0

144 __XM_AHC

145 set sparcv8_iret_nr, %o0

146 __XM_AHC

147
148 .data

149 .align 8

150 __stack:

151 .fill (STACK_SIZE/4),4,0

152 __stack_top:

153
154 .previous

155
156
157 #define BUILD_IRQ(irqnr) \

158 sethi %hi(HwIrqHandlerAsm), %l4 ;\

159 jmpl %l4 + %lo(HwIrqHandlerAsm), %g0 ;\

160 mov irqnr, %l5 ;\

161 nop

162
163 #define BUILD_TRAP(trapnr) \

164 sethi %hi(ExceptionHandlerAsm), %l4 ;\

165 jmpl %l4 + %lo(ExceptionHandlerAsm), %

g0 ;\

166 mov trapnr, %l5 ;\

167 nop ;

168
169 #define BAD_TRAP(trapnr) \

170 1: b 1b ;\

171 nop ;\

172 nop ;\

173 nop

174
175 #define SOFT_TRAP(trapnr) \

176 1: b 1b ;\

177 nop ;\

178 nop ;\

179 nop

180
181 #define BUILD_EXTIRQ(trapnr) \

182 sethi %hi(ExtIrqHandlerAsm), %l4 ;\

183 jmpl %l4 + %lo(ExtIrqHandlerAsm), %g0

;\

184 mov (trapnr+32), %l5 ;\

185 nop

186
187 .align 4096

188 _traptab:

189 ! + 0x00: reset

190 t_reset: b start

191 nop

192 nop

193 nop

194
195 ! + 0x01: instruction_access_exception

196 BUILD_TRAP(0x1)

197
198 ! + 0x02: illegal_instruction

199 BUILD_TRAP(0x2)

200
201 ! + 0x03: privileged_instruction

202 BUILD_TRAP(0x3)

203
204 ! + 0x04: fp_disabled

205 BUILD_TRAP(0x4)

206
207 ! + 0x05: window_overflow

208 BUILD_TRAP(0x5)

209
210
211 !

Listing 5.6: /user/examples/sparcv8/boot.S

The xmImageHdr declares the required image header (see section 6) and one partition header2:
xmPartitionHdr. 850

The entry point of the partition (the first instruction executed) is labeled start. First off, the bss

section is zeroed; the stack pointer (%sp register) is set to a valid address; the address of the partition
header is passed to the libxm (call InitLibxm); the virtual trap table register is loaded with the
direction of traptab; and finally the user routine PartitionMain is called. If the main function
returns, then an endless loop is executed. 855

The remaining of this file contains the trap handler routines. Note that the assembly routines are only
provided as illustrative examples, and should not be used on production application systems. These
trap routines just jump to “C” code which is located in the file traps.c:

#include <xm.h>

#include <xm_inc/arch/paging.h>

#include "std_c.h"

extern void start(void);

struct xmImageHdr xmImageHdr __XMIHDR = {

2Multiple partition headers can be declared to allocate several processors to a single partition (experimental feature not
documented).

xm-3-usermanual-022c Printed: March 1, 2011

42/119 Chapter 5. Partition Programming

.sSignature=XMEF_PARTITION_MAGIC,

.compilationXmAbiVersion=XM_SET_VERSION(XM_ABI_VERSION, XM_ABI_SUBVERSION, XM_ABI_REVISION

),

.compilationXmApiVersion=XM_SET_VERSION(XM_API_VERSION, XM_API_SUBVERSION, XM_API_REVISION

),

.noCustomFiles=0,

/*

.customFileTab={[0]=(struct xefCustomFile){

.sAddr=(xmAddress_t)0x40180000,

.size=0,

},

},

*/

.eSignature=XMEF_PARTITION_MAGIC,

};

void __attribute__ ((weak)) ExceptionHandler(xm_s32_t trapNr) {

xprintf("exception 0x%x (%d)\n", trapNr, trapNr);

//XM_halt_partition(XM_PARTITION_SELF);

}

void __attribute__ ((weak)) ExtIrqHandler(xm_s32_t trapNr) {

xprintf("extIrq 0x%x (%d)\n", trapNr, trapNr);

// XM_halt_partition(XM_PARTITION_SELF);

}

void __attribute__ ((weak)) HwIrqHandler(xm_s32_t trapNr) {

xprintf("hwIrq 0x%x (%d)\n", trapNr, trapNr);

// XM_halt_partition(XM_PARTITION_SELF);

}

Listing 5.7: /user/examples/common/traps.c

Note that the “C” trap handler functions are defined as “weak”. Therefore, if these symbols are defined
elsewhere, the new declaration will replace this one.

The linker script that arranges all the ELF sections is:

/*OUTPUT_FORMAT("binary")*/

OUTPUT_FORMAT("elf32-sparc", "elf32-

sparc", "elf32-sparc")

OUTPUT_ARCH(sparc)

ENTRY(start)

SECTIONS

{

_sguest = .;

.text ALIGN (8): {

*(.text.init)

*(.text)

}

.rodata ALIGN (8) : {

*(.rodata)

(.rodata.)

(.rodata..*)

}

.data ALIGN (8) : {

_sdata = .;

*(.data)

_edata = .;

}

.bss ALIGN (8) : {

_sbss = .;

*(COMMON)

*(.bss)

_ebss = .;

}

_eguest = .;

/DISCARD/ :

{

*(.note)

(.comment)

Printed: March 1, 2011 xm-3-usermanual-022c

5.4. The “Hello World” example 43/119

}

}

Listing 5.8: /user/xal/lib/loader.lds

The section .text.ini, which contains the headers, is located at the beginning of the file (as defined
by the ABI). The section .xm ctl, which contains the PCT table, is located at the start of the bss section 860

to avoid being zeroed at the startup of the partition. The contents of these tables has been initialized
by XtratuM before starting the partition. The symbols sguest and eguest mark the Start and End of
the partition image.

The ported version of the previous simple code is the following:

#include "std_c.h" /* Helper functions */

#include <xm.h>

void PartitionMain () { /* ‘‘C’’ code entry point. */

int counter=0;

xprintf(‘‘Hello World!\n’’);

while(1) {

counter++;

counter %= 100000;

}

}

Listing 5.9: Ported simple example

Listing 5.10 shows the main compilation steps required to generate the final container file, which
contains a complete XtratuM system, of a system of only one partition. The partition is only a single 865

file, called simple.c. This example is provided only to illustrate the build process. It is advisable to use
some of the Makefiles provided in the xm-examples (in the installed tree).

--> Compile the partition souce code: [simple.c] -> [simple.o]

$ sparc-linux-gcc -Wall -O2 -nostdlib -nostdinc -Dsparcv8 -fno-strict-aliasing \

-fomit-frame-pointer --include xm_inc/config.h --include xm_inc/arch/arch_types.h \

-I[...]/libxm/include -DCONFIG_VERSION=2 -DCONFIG_SUBVERSION=1 \

-DCONFIG_REVISION=3 -g -D_DEBUG_ -c -o simple.o simple.c

--> Link it with the startup (libexamples.a)

$ sparc-linux-ld -o simple simple.o -n -u start -T[...]/lib/loader.lds -L../lib \

-L[...]xm/lib --start-group ‘sparc-linux-gcc -print-libgcc-file-name ‘ -lxm -lxef \

-lexamples --end-group -Ttext=0x40080000

--> Convert the partition ELF to the XEF format.

$ xmeformat build -c simple -o simple.xef

--> Compile the configuration file.

$ xmcparser -o xm_cf.bin.xmc xm_cf.sparcv8.xml

--> Convert the configuration file to the XEF format.

$ xmeformat build -c -m xm_cf.bin.xmc -o xm_cf.xef.xmc

--> Pack all the XEF files of the system into a single container

$ xmpack build -h [...]/xm/lib/xm_core.xef:xm_cf.xef.xmc -p 0:simple.xef container.bin

--> Build the final bootable file with the resident sw and the container.

$ rswbuild container.bin resident_sw

Listing 5.10: Example of a compilation sequence.

xm-3-usermanual-022c Printed: March 1, 2011

44/119 Chapter 5. Partition Programming

The partition code shall be compiled with with the flags -nostdlib and -nostdinc to avoid using
host specific facilities which are not provided by XtratuM. The bindings between assembly and “C” are
done considering that not frame pointer is used: -fomit-frame-pointer.870

All the object files (traps.o,boot.o and simple.o) are linked together, and the text section is
positioned in the direction 0x40050000. This address shall be the same than the one declared in the
XM CF file:

<PartitionTable>

<Partition id="0" name="Partition1" flags="system" console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40080000" size="512KB"/>

</PhysicalMemoryAreas>

<TemporalRequirements duration="500ms" period="500ms"/>

</Partition>

<Partition id="1" name="Partition2" flags="system" console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40100000" size="512KB" flags=""/>

</PhysicalMemoryAreas>

<TemporalRequirements duration="500ms" period="500ms"/>

<HwResources>

<Interrupts lines="4"/>

</HwResources>

</Partition>

</PartitionTable>

Listing 5.11: /user/xal/examples/hello world/xm cf.sparcv8.xml

In order to avoid inconsistences between the memory @Area attribute of the configuration and the
parameter passed to the linker, the examples/common/xpath tool3 can be used, from a Makefile, to875

extract the information from the configuration file.

$ cd user/examples/hello_world

$../common/xpath -c -f xm_cf.sparcv8.xml /SystemDescription/PartitionTable/

Partition[1]/PhysicalMemoryAreas/Area[1]/@start

0x40050000

Listing 5.12: Using xpath to recover to memory area of the first partition.

The attribute /SystemDescription/PartitionTable/Partition[1]/PhysicalMemoryAreas/Area[1]/-
@start is the xpath reference to the attribute which defines the first region of memory allocated to the
first partition, which in the example is the place where the partition will be loaded.

5.4.1 Included headers

The include header which contains all the definitions and declarations of the libxm.a library is xm.h.880

This file depends (includes) also the next list of files:

includes

|-- comm.h

|-- endianess.h885

|-- hm.h

|-- hypervisor.h

|-- status.h

|-- trace.h

|-- xm.h890

|-- xmhypercalls.h

3xpath is a small shell script frontend to the xmllint utility.

Printed: March 1, 2011 xm-3-usermanual-022c

5.5. Partition reset 45/119

‘-- sparcv8

|-- atomic_ops.h

|-- hypervisor.h

‘-- xmhypercalls.h 895

5.5 Partition reset

A partition reset is an unconditional jump to the partition entry point. There are two modes to reset a
partition: XM WARM RESET and XM COLD RESET.

On a warm reset, the state of the partition is mostly preserved. Only the field resetCounter of
the PCT is incremented, and the field resetStatus is set to the value given on the hypercall (see 900

XM partition reset()).

On a cold reset: the PCT table is rebuild; resetCounter field is set to zero; and resetStatus set to
the value given on the hypercall; the communication ports are closed; the timers are disarmed.

5.6 System reset

There are two different system reset sequences:

Warm reset: XtratuM jumps to its entry point. This is basically a software reset. 905

Cold reset: A hardware reset if forced. (See section 8.3.5).

The set of actions done on a warm system reset are still under development.

5.7 Scheduling

5.7.1 Slot identification

A partition can get information about which is the current slot being executed quering its PCT. This
information can be used to synchronise the operation of the partition with the scheduling plan.

The information provided is: 910

Slot duration: The duration of the current slot. The value of the attribute “duration” for the current
slot.

Slot number: The slot position in the system plan, starting in zero.

Id value: Each slot in the configuration file has a required attribute, named “id”, which can be used to
label each slot with a user defined number. 915

The id field is not interpreted by XtratuM and can be used to mark, for example, the slots at the starts
of each period.

xm-3-usermanual-022c Printed: March 1, 2011

46/119 Chapter 5. Partition Programming

5.7.2 Managing scheduling plans

A system partition can request a plan switch at any time using the hypercall XM set plan(). The
system will change to the new plan at the end of the current MAF. If XM set plan() is called several
times before the end of the current plan, then the plan specified in the last call will take effect.920

The hypercall XM get plan status() returns information about the plans. The xmPlanStatus t con-
tains the following fields:

typedef struct {

xmTime_t switchTime;

xm_s32_t next;

xm_s32_t current;

xm_s32_t prev;

} xmPlanStatus_t;

Listing 5.13: /core/include/objects/status.h

switchTime: The absolute time of the last plan switch request. After a reset (both warm and cold),
the value is set to zero.

current: Identifier of the current plan.

next: The plan identifier that will be active on the next major frame. If no plan switch is going to
occur, then the value of next is equal to the value of current.925

prev: The identifier of the plan executed before the current one. After a reset (both warm and cold)
the value is set to (-1).

5.8 Console output

XtratuM offers a basic service to print a string on the console. This service is provided through a
hypercall.

XM_write_console("Partition 1: Start execution\n", 29);

Listing 5.14: Simple hypercall invocation.

Additionally to this low level hypercall, some function have been created to facilitate the use of the930

console by the partitions. These functions are coded in examples/common/std c.c. Some of these
functions are: strlen(), print str(), xprintf() which are similar to the functions provided by a
stdio.

The use of xprintf() is illustrated in the next example:

#include <xm.h>

#include "std_c.h" // header of the std_c.h

void PartitionMain () { // partition entry point

int counter=0;

while(1) {

counter++;

if (!(counter%1000))

xprintf("%d\n", counter);

}

}

Listing 5.15: Ported dummy code 1

Printed: March 1, 2011 xm-3-usermanual-022c

5.9. Inter-partition communication 47/119

xprintf() performs some format management in the function parameters and invokes the hypercall 935

which stores it in a kernel buffer. This buffer can be sent to the serial output or other device.

5.9 Inter-partition communication

Partitions can send/receive messages to/from other partitions. The basic mechanisms provided are
sampling and queuing ports. The use of sampling ports is detailed in this section.

Ports need to be defined in the system configuration file XM CF. Source and destination ports are
connected through channels. Assuming that ports and channel linking the ports are defined in the 940

configuration file, the next partition code shows how to use it.

XM create sampling port() and XM create queuing port() hypercalls return object descriptors . A
object descriptor is an integer, where the 16 least significant bits are a unique id of the port and the
upper bits are reserved for internal use.

In this example partition 1 writes values in the port1 whereas partition 2 read them. 945

#include <xm.h>

#include "std_c.h"

#define PORT_NAME "port1"

#define PORT_SIZE 48

void PartitionMain () { // partition entry point

int counter=0;

int portDEsc;

portDesc=XM_create_sampling_port(PORT_NAME,

PORT_SIZE,

XM_SOURCE_PORT);

if (portDesc < 0) {

xprintf("[%s] cannot be created", PORT_NAME);

return;

}

while(1) {

counter++;

if (!(counter%1000)){

XM_write_sampling_message(portDesc,

counter, sizeof(counter));

}

}

}

Listing 5.16: Partition 1

#include <xm.h>

#include "std_c.h"

#define PORT_NAME "port2"

#define PORT_SIZE 48

void PartitionMain () { // partition entry point

int value;

int previous = 0;

int portDesc;

xm_u32_t flags;

portDesc=XM_create_sampling_port(PORT_NAME,

PORT_SIZE,

XM_DESTINATION_PORT);

if (portDesc < 0) {

xprintf("[%s] cannot be created", PORT_NAME);

return;

}

while(1) {

XM_read_sampling_message(portDesc,

&value,

sizeof(value),

&flags);

if (!(value == previous)){

xprintf("%d\n", value);

previous = value;

}

}

}

Listing 5.17: Partition 2

An interesting exercise is to determine which values will be printed.

xm-3-usermanual-022c Printed: March 1, 2011

48/119 Chapter 5. Partition Programming

5.9.1 Message notification

When a message is sent into a queuing port, or written into a sampling port, XtratuM triggers the
extended interrupt XM VT EXT OBJDESC. By default, this interrupt is masked when the partition boots.

5.10 Peripheral programming

The LEON2 processor implements a memory-mapped I/O for performing hardware input and output
operations to the peripherals. There are two hypercalls to access I/O registers: XM sparcv8 inport()950

and XM sparcv8 outport().

In order to be able to access (read from or write to) hardware I/O port the corresponding ports have
to be allocated to the partition in the XM CF configuration file.

There are two methods to allocate ports to a partition in the configuration file:

Range of ports: A range of I/O ports, with no restriction, allocated to the partition. The Range element955

is used.

Restricted port: A single I/O port with restrictions on the values that the partition is allowed to write
in. The Restricted element is used in the configuration file. There are two kind of restrictions
that can be specified:

Bitmask: Only those bits that are set, can be modified by the partition. In the case of a read960

operation only those bits set in the mask will be returned to the partition; the rest of the bits
will be resetted. Attribute mask.

The attribute (mask is optional. A restricted port declaration with no attribute, is equivalent to
declare a range of ports of size one. In the case that both, the bitmap and the range of values, are
specified then the bitmap is applied first and then the range is checked.965

The implementation of the bit mask is done as follows:

oldValue=LoadIoReg(port);

StoreIoReg(port, ((oldValue&~(mask))|(value&mask)));

Listing 5.18: /core/kernel/sparcv8/hypercalls.c

First off, the port is read, to get the value of the bits not allocated to the partitions, then the bits which
have to be modified are changed, and finally the value is written back.

The read operation shall not cause side effects on the associated peripheral. For example, some
devices may interpret as interrupt acknowledge to read from a control port. Another source of errors
may happen when the restricted is implemented as an open collector output. In this case, if the pin is970

connected to an external circuit which forces a low voltage, then the value read from the io port is not
the same than the value previous written.

The following example declares a range of ports and two restricted ones.

<Partition >

<HwResources>

<IoPorts>

<Restricted address="0x3000" mask="0xff" />

</IoPorts>

</HwResources>

</Partition>

Printed: March 1, 2011 xm-3-usermanual-022c

5.11. Traps, interrupts and exceptions 49/119

If the bitmask restriction is used, then the bits of the port that are not set in the mask can be allocated
to other partitions. This way, it is possible to perform a fine grain (bit level) port allocation to partitions. 975

That is a single ports can be safely shared among several partitions.

5.11 Traps, interrupts and exceptions

5.11.1 Traps

A partition can not directly manage processor traps. XtratuM provides a para-virtualized trap system
called virtual traps. XtratuM defines 256+32 traps. The first 256 traps correspond directly with to the
hardware traps. The last 32 ones are defined by XtratuM.

The structure of the virtual trap table mimics the native trap table structure. Each entry is a 16 bytes 980

large and contains the trap handler routine (which in the practice, is a branch or jump instruction to
the real handler).

At boot time (or after a reset) a partition shall setup its virtual trap table and load the virtual
$tbr register with the start address of the table. The $tbr register can be managed with the hy-
percalls: XM read register32() and XM write register32() with the appropriate register name:

#define TBR_REG32 0

Listing 5.19: /core/include/arch/processor.h

If a trap is delivered to the partition and there is not a valid virtual trap table, then the health
monitoring event XM EM EV PARTITION UNRECOVERABLE is generated.

5.11.2 Interrupts

In order to properly manage a peripheral, a partition can request to manage directly a hardware inter- 985

rupt line. To do so, the interrupt line shall be allocated to the partition in the configuration file.

There are two groups of virtual interrupts:

Hardware interrupts: Correspond to the native hardware interrupts. Note that SPARC v8 defines only
15 interrupts (from 1 to 15), but XtratuM reserves 32 for compatibility with other architectures.

Interrupt 1 to 15 are assigned to traps 0x11 to 0x1F respectively (as in the native hardware). 990

Extended interrupts: Correspond to the XtratuM extended interrupts.

These interrupts are assigned from traps 0xE0 to 0xFF.

#define XM_VT_HW_FIRST (0)

#define XM_VT_HW_LAST (31)

#define XM_VT_HW_MAX (32)

#define XM_VT_HW_INTERNAL_BUS_TRAP_NR (1+XM_VT_HW_FIRST)

#define XM_VT_HW_UART2_TRAP_NR (2+XM_VT_HW_FIRST)

#define XM_VT_HW_UART1_TRAP_NR (3+XM_VT_HW_FIRST)

#define XM_VT_HW_IO_IRQ0_TRAP_NR (4+XM_VT_HW_FIRST)

#define XM_VT_HW_IO_IRQ1_TRAP_NR (5+XM_VT_HW_FIRST)

#define XM_VT_HW_IO_IRQ2_TRAP_NR (6+XM_VT_HW_FIRST)

#define XM_VT_HW_IO_IRQ3_TRAP_NR (7+XM_VT_HW_FIRST)

xm-3-usermanual-022c Printed: March 1, 2011

50/119 Chapter 5. Partition Programming

#define XM_VT_HW_TIMER1_TRAP_NR (8+XM_VT_HW_FIRST)

#define XM_VT_HW_TIMER2_TRAP_NR (9+XM_VT_HW_FIRST)

#define XM_VT_HW_DSU_TRAP_NR (11+XM_VT_HW_FIRST)

#define XM_VT_HW_PCI_TRAP_NR (14+XM_VT_HW_FIRST)

#define XM_VT_EXT_FIRST (0)

#define XM_VT_EXT_LAST (31)

#define XM_VT_EXT_MAX (32)

#define XM_VT_EXT_HW_TIMER (0+XM_VT_EXT_FIRST)

#define XM_VT_EXT_EXEC_TIMER (1+XM_VT_EXT_FIRST)

#define XM_VT_EXT_WATCHDOG_TIMER (2+XM_VT_EXT_FIRST)

#define XM_VT_EXT_SHUTDOWN (3+XM_VT_EXT_FIRST)

#define XM_VT_EXT_OBJDESC (4+XM_VT_EXT_FIRST)

#define XM_VT_EXT_CYCLIC_SLOT_START (8+XM_VT_EXT_FIRST)

#define XM_VT_EXT_MEM_PROTECT (16+XM_VT_EXT_FIRST)

/* Inter-Partition Virtual Interrupts */

#define XM_MAX_IPVI 8

#define XM_VT_EXT_IPVI0 (24+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI1 (25+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI2 (26+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI3 (27+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI4 (28+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI5 (29+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI6 (30+XM_VT_EXT_FIRST)

#define XM_VT_EXT_IPVI7 (31+XM_VT_EXT_FIRST)

Listing 5.20: /core/include/guest.h

Both, extended and hardware interrupts can be routed to a different interrupt vector through the
XM route irq() hypercall, this hypercall enables a partition to select the most suitable vector to be
raised.995

All hardware and extended interrupts can be masked through the following hypercalls: XM clear irqmask()

and XM set irqmask(). Besides, all these set of interrupts can be globally disabled/enable by using the
XM sparc get psr() and XM sparc set psr() hypercalls, mimicking the way the underneath architec-
ture works.

An example of interrupts:

#include "std_c.h"

#include <xm.h>

void IrqHandler(int irqnr) {

xprintf("Hardware irq: %d\nHalting......\n", irqnr);

XM_halt_partition(XM_PARTITION_SELF);

}

void ExtIrqHandler(int irqnr) {

xprintf("Extended irq: %d\nHalting......\n", irqnr);

XM_halt_partition(XM_PARTITION_SELF);

}

void PartitionMain(void) {

xm_s32_t err;

xmTime_t oneshoot;

XM_get_time(XM_HW_CLOCK , &oneshoot);

Printed: March 1, 2011 xm-3-usermanual-022c

5.12. Clock and timer services 51/119

oneshoot += (xmTime_t)100000; // 1 second

XM_set_timer(XM_HW_CLOCK , oneshoot, 0);

XM_enable_irqs();

err = XM_unmask_irq(XM_VT_EXT_HW_TIMER);

xprintf("Unmask extirq XM_VT_EXT_HW_TIMER: %d\n", err);

err = XM_unmask_irq(XM_VT_HW_IO_IRQ0_TRAP_NR);

xprintf("Unmask hwirq 4: %d\n", err);

while(1) {

XM_idle_self();

}

}

Listing 5.21: /user/examples/hwirq/hwirq.c

5.11.3 Exceptions

Exceptions are the traps triggered by the processor in response to an internal condition. Some ex- 1000

ceptions are caused by normal operation of the processor (e.g. register window over/underflow) but
others are caused by abnormal situations (e.g. invalid instruction).

Error related exception traps, are managed by XtratuM thorough the health monitoring system.

#define DATA_STORE_ERROR 0x2b // 0

#define INSTRUCTION_ACCESS_MMU_MISS 0x3c // 1

#define INSTRUCTION_ACCESS_ERROR 0x21 // 2

#define R_REGISTER_ACCESS_ERROR 0x20 // 3

#define INSTRUCTION_ACCESS_EXCEPTION 0x1 // 4

#define PRIVILEGED_INSTRUCTION 0x03 // 5

#define ILLEGAL_INSTRUCTION 0x2 // 6

#define FP_DISABLED 0x4 // 7

#define CP_DISABLED 0x24 // 8

#define UNIMPLEMENTED_FLUSH 0x25 // 9

#define WATCHPOINT_DETECTED 0xb // 10

//#define WINDOW_OVERFLOW 0x5

//#define WINDOW_UNDERFLOW 0x6

#define MEM_ADDRESS_NOT_ALIGNED 0x7 // 11

#define FP_EXCEPTION 0x8 // 12

#define CP_EXCEPTION 0x28 // 13

#define DATA_ACCESS_ERROR 0x29 // 14

#define DATA_ACCESS_MMU_MISS 0x2c // 15

#define DATA_ACCESS_EXCEPTION 0x9 // 16

#define TAG_OVERFLOW 0xa // 17

#define DIVISION_BY_ZERO 0x2a // 18

Listing 5.22: /core/include/arch/irqs.h

If the health monitoring action associated with the HM event is XM HM AC PROPAGATE, then the same
trap number is propagated to the partition as a virtual trap. The partition code is then in charge of
handling the error. 1005

xm-3-usermanual-022c Printed: March 1, 2011

52/119 Chapter 5. Partition Programming

5.12 Clock and timer services

XtratuM provides the XM get time() hypercall to read the time from a clock, and the XM set timer()

hypercall to arm a timer.

There are two clocks available:

#define XM_HW_CLOCK (0x0)

#define XM_EXEC_CLOCK (0x1)

Listing 5.23: /core/include/hypercalls.h

XtratuM provides one timer for each clock. The timers can be programmed in one-shot or in periodic
mode. Upon expiration, the extended interrupts XM VT EXT HW TIMER and XM VT EXT EXEC TIMER are
triggered. These extended interrupts correspond with traps (256+XM VT EXT HW TIMER) and (256+XM-1010

VT EXT EXEC TIMER) respectively.

5.12.1 Execution time clock

The clock XM EXEC CLOCK only advances while the partition is being executed or while XtratuM is exe-
cuting a hypercall requested by the partition. The execution time clock computes the total time used
by the target partition.

This clock relies on the XM HW CLOCK, and so, its resolution is also 1µsec. Its precision is not as accurate1015

as that of the XM HW CLOCK due to the errors introduced by the partition switch.

The execution time clock does not advance when the partition gets idle or suspended. Therefore, the
XM EXEC CLOCK clock should not be used to arm a timer to wake up a partition from an idle state.

The code below computes the temporal cost of a block of code.

#include <xm.h>

#include "std_c.h"

void PartitionMain() {

xmTime_t t1, t2;

XM_get_time(XM_EXEC_CLOCK, &t1);

// code to be measured

XM_get_time(XM_EXEC_CLOCK, &t2);

xprintf("Initial time: %lld, final time: %lld", t1, t2);

xprintf("Difference: %lld\n", t2-t1);

XM_halt_partition(XM_PARTITION_SELF);

}

5.13 Processor management

Currently only the $tbr processor control register has been virtualised. This register should be loaded
(with the hypercall XM write register32()) with the address of the partition trap table. This operation1020

is usually done only once when the partition boots (see listing 5.6).

Printed: March 1, 2011 xm-3-usermanual-022c

5.14. Tracing 53/119

5.13.1 Managing stack context

The SPARC v8 architecture (following the RISC ideas) tries to simplify the complexity of the processor
by moving complex management tasks to the compiler or the operating system. One of the most
particular features of SPARC v8 is the register window concept, and how it should be managed.

Both, register window overflow and underflow cause a trap. This trap has to be managed in supervisor 1025

mode and with traps disabled (bit ET in the $psr register is unset) to avoid overwriting valid registers.
It is not possible to emulate efficiently this behaviour.

XtratuM provides a transparent management of the stack. Stack overflow and underflow is directly
managed by XtratuM without the intervention of the partition. The partition code shall load the stack
register with valid values. 1030

In order to implement a content switch inside a partition (if the partition is a multi-thread environ-
ment), the function XM sparcv8 flush regwin() can be used to flush (spill) all register windows in the
current CPU stack. After calling this function, all the register windows, but the current one, are stored
in RAM and then marked as free. The partition context switch code should basically carry out the next
actions: 1035

1. call XM sparcv8 flush regwin()

2. store the current “g”, “i” and “l” registers in the stack

3. switch to the new thread’s stack and

4. restore the same set of registers.

Note that there is no complementary function to reload (fill) the registers, because it is done auto- 1040

matically.

The XM sparcv8 flush regwin() service can also be used set the processor in a know state before
executing a block of code. All the register windows will be clean and no window overflow will happen
during the next 7 nested function calls.

5.14 Tracing

5.14.1 Trace messages

The hypercall XM trace event() stores a trace message in the partition’s associated buffer. A trace 1045

message is a xmTraceStatus t structure which contains a opCode and an associated user defined data:

typedef struct {

xmTraceOpCode_t opCode;

xm_u32_t reserved;

xmTime_t timeStamp;

union {

xm_u32_t word[4];

char str[16];

struct {

xmId_t partitionId;

xm_s32_t newPlanId;

} auditEvent;

};

} xmTraceEvent_t;

xm-3-usermanual-022c Printed: March 1, 2011

54/119 Chapter 5. Partition Programming

Listing 5.24: /core/include/objects/trace.h

The type xmTraceOpCode t is a 32bit value with the following bit fields:

typedef struct {

xm_u32_t code:13, criticality:3, moduleId:8, partitionId:8;

#define XM_TRACE_UNRECOVERABLE 0x3 // This level triggers a health

// monitoring fault

#define XM_TRACE_WARNING 0x2

#define XM_TRACE_DEBUG 0x1

#define XM_TRACE_NOTIFY 0x0

} xmTraceOpCode_t;

Listing 5.25: /core/include/objects/trace.h

partitionId: Identify the partition who issued the trace event. This field is automatically filled by
XtratuM. The value XM HYPERVISOR ID is used to identify XtratuM traces.

moduleId: For the traces issued by the partitions, this filed is user defined.

For the traces issued by XtratuM, this field identifies an internal subsystem:1050

TRACE MODULE HYPERVISOR Traces related to XtratuM core events.

TRACE MODULE PARTITION Traces related to partition operation.

TRACE MODULE SCHED Traces concerning scheduling.

code: This filed is user defined for the traces issued by the partitions. For the traces issued by XtratuM,
the values of the code field depends on the value of the moduleId:1055

If moduleId = TRACE MODULE HYPERVISOR

TRACE EV HYP HALT: The hypervisor is about to halt.
TRACE EV HYP RESET: The hypervisor is about to perform a software reset.
TRACE EV HYP AUDIT INIT: The first message after the audit startup.

If moduleId = TRACE MODULE PARTITION1060

The field auditEvent.partitionId has the identifier of the affected partition. The recorded
events are:

TRACE EV PART SUSPEND: The affected partition has been suspended.
TRACE EV PART RESUME: The affected partition has been resumed.
TRACE EV PART HALT: The affected partition has been halted.1065

TRACE EV PART SHUTDOWN: A shutdown extended interrupt has been delivered to the parti-
tion.

TRACE EV PART IDLE: The affected partition has been set in idle state.
TRACE EV PART RESET: The affected partition has been reset.

If moduleId = TRACE MODULE SCHED1070

The field auditEvent.partitionId has the identifier of the partition that requested the plan
switch; or XM HYPERVISOR ID if the plan switch is the consequence of the XM HM AC SWITCH TO MAINTENANCE

health monitoring action.
The field auditEvent.newPlanId has the identifier of the new plan.

TRACE EV SCHED CHANGE REQ: A plan switch has been requested.1075

TRACE EV SCHED CHANGE COMP: A plan switch has been carried out.

Printed: March 1, 2011 xm-3-usermanual-022c

5.15. System and partition status 55/119

criticality: Determines the importance/criticality of the event that motivated the trace message.
Next are the intended use of the levels:

XM TRACE NOTIFY A notification messages of the progress of the application at coarse-grained
level. 1080

XM TRACE DEBUG A detailed information message intended to be used for debugging during the
development phase.

XM TRACE WARNING Traces which informs about potentially harmful situations.
XM TRACE UNRECOVERABLE Traces of this level are managed also by the health monitoring sub-

system: a user HM event is generated, and handled according to the HM configuration. Note 1085

that both, the normal partition trace message is stored, and the HM event is generated.

Jointly with the opCode and the user data, the XM trace event() function has a bitmask parameter
that is used to filter out trace events. If the logical AND between the bitmask parameter and the bitmask
of the XM CF configuration file is not zero then the trace event is logged; otherwise it is discarded. Traces
of XM TRACE UNRECOVERABLE critically always raises a health monitoring event regarding the bitmask. 1090

5.14.2 Reading traces

Only one system partition can read from a trace stream. A standard partition can not read its own
trace messages, it is only allowed to store traces on it.

If the trace stream is stored in a buffer (RAM or FLASH). When the buffer is full, the oldest events are
overwritten.

5.14.3 Configuration

XtratuM statically allocates a block of memory to store all traces. The amount of memory reserved to 1095

store traces is a configuration parameter of the sources (see section 8.1).

In order to be able to store the traces of a partition, as well as the traces generated by XtratuM, it has
to be properly configured in the XM CF configuration file. The bitmask attribute is used to filter which
traces are stored.

<Trace device="MemDisk0" bitmask="0x00000005"/>

Listing 5.26: /user/examples/sched events/xm cf.sparcv8.xml

The traces recoded by XtratuM can be selected (masked) at module granularity.

#define TRACE_BM_HYPERVISOR 0x1

#define TRACE_BM_PARTITION 0x2

#define TRACE_BM_SCHED 0x4

Listing 5.27: /core/include/objects/trace.h

In the example of listing 5.26, the TRACE BM HYPERVISOR and TRACE BM SCHED events will be recorded 1100

but not TRACE BM PARTITION.

5.15 System and partition status

The hypercalls XM get partition status() and XM get system status() return information about a
given partition and the system respectively.

xm-3-usermanual-022c Printed: March 1, 2011

56/119 Chapter 5. Partition Programming

The data structure returned are:

typedef struct {

/* Current state of the partition: ready, suspended ... */

xm_u32_t state;

#define XM_STATUS_IDLE 0x0

#define XM_STATUS_READY 0x1

#define XM_STATUS_SUSPENDED 0x2

#define XM_STATUS_HALTED 0x3

/* Number of virtual interrupts received. */

xm_u64_t noVIrqs; /* [[OPTIONAL]] */

/* Reset information */

xm_u32_t resetCounter;

xm_u32_t resetStatus;

xmTime_t execClock;

/* Total number of partition messages: */

xm_u64_t noSamplingPortMsgsRead; /* [[OPTIONAL]] */

xm_u64_t noSamplingPortMsgsWritten; /* [[OPTIONAL]] */

xm_u64_t noQueuingPortMsgsSent; /* [[OPTIONAL]] */

xm_u64_t noQueuingPortMsgsReceived; /* [[OPTIONAL]] */

} xmPartitionStatus_t;

Listing 5.28: Partition status.

typedef struct {

xm_u32_t resetCounter;

/* Number of HM events emitted. */

xm_u64_t noHmEvents; /* [[OPTIONAL]] */

/* Number of HW interrupts received. */

xm_u64_t noIrqs; /* [[OPTIONAL]] */

/* Current major cycle interation. */

xm_u64_t currentMaf; /* [[OPTIONAL]] */

/* Total number of system messages: */

xm_u64_t noSamplingPortMsgsRead; /* [[OPTIONAL]] */

xm_u64_t noSamplingPortMsgsWritten; /* [[OPTIONAL]] */

xm_u64_t noQueuingPortMsgsSent; /* [[OPTIONAL]] */

xm_u64_t noQueuingPortMsgsReceived; /* [[OPTIONAL]] */

} xmSystemStatus_t;

Listing 5.29: System status.

The field execClock of a partition is the execution time clock of the target partition. The rest of the
fields are self explained.1105

Those fields commented as [[OPTIONAL]] contain valid data only if XtratuM has been compiled with
the flag “Enable system/partition status accounting” enabled.

5.16 Memory management

XtratuM implements a flat memory space on the SPARC v8 architecture (LEON2 and LEON3 proces-
sors). The addresses generated by the control unit are directly emitted to the memory controller without
any translation. Therefore, each partition shall be compiled and linked to work on the designated1110

memory range. The starting address and the size of each partition is specified in the system configu-
ration file.

Printed: March 1, 2011 xm-3-usermanual-022c

5.17. Releasing the processor 57/119

Two different hardware features can be used to implement memory protection:

Write Protection Registers (WPR): In the case that there is no MMU support, then it is possible to
use the WPR device of the LEON2 and LEON3 processors. The WPR device can be programmed 1115

to raise a trap when the processor tries to write on a configured address range.

Since read memory operations are not controlled by the WPR, it is not possible to enforce com-
plete (read/write) memory isolation in this case. Also, due to the internal operation of the WPR
device, all the memory allocated to each partition has to be contiguous and has to meet the
following conditions: 1120

• The size shall be greater than or equal to 32KB.

• The size shall be a power or two.

• The start address shall be a multiple of the size.

Memoy Management Unit (MMU): If the processor has MMU, and XtratuM has been compiled to use
it, then fine grain (page size) memory protection provided. In this case one or more areas of 1125

memory can be allocated to each partition.

The MMU is used only as a MPU (memory protection unit), i.e, the virtual and physical addresses
are the same. Only the protections bits of the pages are used. As a result, each partition shall be
compiled and linked to the designated addresses where they will be loaded and executed.

The memory protection mechanism employed is a source code configuration option. See section 8.1. 1130

The memory areas allocated to a partition are defined in the XM CF file. The executable image shall
be linked to be executed in those allocated memory areas.

The XM get physmem map() returns the set of memory areas allocated the partition. Available since
XtratuM 3.1.

5.17 Releasing the processor

In some situations, a partition is waiting for a new event to execute a task. If no more tasks are pending 1135

to be executed, then the partition can become idle. The idle partition becomes ready again when an
interrupt is received.

The partition can inform to XtratuM about its idle state (see XM idle self()). In the current imple-
mentation, XtratuM does nothing while a partition is idle, that is, other partition is not executed; but
it opens the possibility to use this wasted time in internal bookkeeping or other maintenance activities. 1140

Also, energy saver actions can be done during this idle time.

Since XtratuM delivers an event on every new slot, the idle feature can also be used to synchronise
the operation of the partition with the scheduling plan.

5.18 Partition customisation files

A partition is composed of a binary image (code and data) and, zero or more additional files (customi-
sation files). To ease the management of these additional files, the header of the partition image (see 1145

section 6.4.1) holds the fields noModules and moduleTab, where the first is the number of additional
files which have to be loaded and the second is an array of data structure which defines the loading
address and the sizes of these additional files. During its creation, the partition is responsible for filling
these fields with the address of a pre-allocated memory area inside its memory space.

xm-3-usermanual-022c Printed: March 1, 2011

58/119 Chapter 5. Partition Programming

These information shall be used by the loader software, for instance the resident software or a man-1150

ager system partition, in order to know the place where to copy into RAM these additional files. If the
size of any of these files is larger than the one specified on the header of the partition or the memory
address is invalid, then the loading process shall fail.

These additional files shall be accessible by part of the loader software. For example, they must be
packed jointly with the partition binary image by using the xmpack tool.1155

5.19 Assembly programming

This section describes the assembly programming convention, in order to invoke the XtratuM hypercalls.

The register assignment convention for calling a hypercall is:

%o0 Holds the hypercall number.

%o1 - %o5 Holds the parameters to the hypercall.

Once the processor registers have been loaded, a ta instruction to the appropriate software trap1160

number shall be called, see section 6.2.

The return value is stored in register %o0.

For example, following assembly code calls the XM get time(xm u32 t clockId, xmTime t *time):

mov 0xa , %o0 ; __GET_TIME_NR

mov %i0, %o1

mov %i1, %o2

ta 0xf0

cmp %o0, 0 ; XM_OK == 0

bne <error>

In SPARC v8, the get time nr constant has the value “0xa”; “%i0” holds the clock id; and “%i1” is a
pointer which points to a xmTime t variable. The return value of the hypercall is stored in “%o0” and
then checked if XM OK.1165

Below is the list of normal hypercall number constants (listing 5.30) and assembly hypercalls (list-
ing 5.31):

#define __MULTICALL_NR 0

#define __HALT_PARTITION_NR 1

#define __SUSPEND_PARTITION_NR 2

#define __RESUME_PARTITION_NR 3

#define __RESET_PARTITION_NR 4

#define __SHUTDOWN_PARTITION_NR 5

#define __HALT_SYSTEM_NR 6

#define __RESET_SYSTEM_NR 7

#define __IDLE_SELF_NR 8

#define __WRITE_REGISTER32_NR 9

#define __GET_TIME_NR 10

#define __SET_TIMER_NR 11

#define __READ_OBJECT_NR 12

#define __WRITE_OBJECT_NR 13

#define __SEEK_OBJECT_NR 14

#define __CTRL_OBJECT_NR 15

#define __CLEAR_IRQ_MASK_NR 16

#define __SET_IRQ_MASK_NR 17

#define __FORCE_IRQS_NR 18

#define __CLEAR_IRQS_NR 19

#define __ROUTE_IRQ_NR 20

#define __UPDATE_PAGE32_NR 21

#define __SET_PAGE_TYPE_NR 22

#define __RAISE_IPVI_NR 23

#define sparcv8_atomic_add_nr 24

#define sparcv8_atomic_and_nr 25

#define sparcv8_atomic_or_nr 26

#define sparcv8_inport_nr 27

#define sparcv8_outport_nr 28

Listing 5.30: xm inc/arch/hypercalls.h

Printed: March 1, 2011 xm-3-usermanual-022c

5.20. Manpages summary 59/119

#define sparcv8_iret_nr 0

#define sparcv8_flush_regwin_nr 1

#define sparcv8_get_psr_nr 2

#define sparcv8_set_psr_nr 3

#define sparcv8_flush_cache_nr 4

#define sparcv8_flush_tlb_nr 5

#define sparcv8_set_pil_nr 6

#define sparcv8_clear_pil_nr 7

Listing 5.31: xm inc/arch/hypercalls.h

The file “core/include/sparckv8/hypercalls.h” has additional services for the SPARC v8 architecture.

5.19.1 The object interface

XtratuM implements internally a kind of virtual file system (as the /dev directory). Most of the libxm
hypercalls are implemented using this file system. The hypercalls to access the objects are used inter-
nally by the libxm and shall not be used by the programmer. They are listed here just for complete-
ness:

extern __stdcall xm_s32_t XM_read_object(xmObjDesc_t objDesc, void *buffer, xm_u32_t size, xm_u32_t *flags);

extern __stdcall xm_s32_t XM_write_object(xmObjDesc_t objDesc, void *buffer, xm_u32_t size, xm_u32_t *flags);

extern __stdcall xm_s32_t XM_seek_object(xmObjDesc_t objDesc, xm_u32_t offset, xm_u32_t whence);

extern __stdcall xm_s32_t XM_ctrl_object(xmObjDesc_t objDesc, xm_u32_t cmd, void *arg);

Listing 5.32: /user/libxm/include/xmhypercalls.h

The following services are implemented through the object interface:

• Communication ports. 1170

• Console output.

• Health monitoring logs.

• Memory access.

• XtratuM and partition status.

• Trace logs. 1175

• Serial ports.

For example, the XM hm status() hypercall is implemented in the libxm as:

xm_s32_t XM_hm_status(xmHmStatus_t *hmStatusPtr) {

if (!(libXmParams.partCtrlTab->flags&XM_PART_SYSTEM))

return XM_PERM_ERROR;

if (!hmStatusPtr) {

return XM_INVALID_PARAM;

}

return XM_ctrl_object(OBJDESC_BUILD(OBJ_CLASS_HM, XM_HYPERVISOR_ID, 0), XM_HM_GET_STATUS,

hmStatusPtr);

}

Listing 5.33: /user/libxm/common/hm.c

5.20 Manpages summary

Below is a summary of the manpages. A detailed information is provided in the document “Volume 4:
Reference Manual”.

xm-3-usermanual-022c Printed: March 1, 2011

60/119 Chapter 5. Partition Programming

Hypercall Description

XM clear irqmask Unmask interrupts.
XM clear irqpend Unmask interrupts.
XM create queuing port Create a queuing port.
XM create sampling port Create a sampling port.
XM disable irqs Replaced by XM sparcv8 clear pil() on Sparc processors.
XM enable irqs Replaced by XM sparcv8 set pil() on Sparc processors.
XM get partition mmap Return a pointer to the memory map table (MMT).
XM get partition status Get the current status of a partition.
XM get plan status Return information about the scheduling plans.
XM get queuing port info Get the info of a queuing port.
XM get queuing port status Get the status of a queuing port.
XM get sampling port info Get the info of a sampling port.
XM get sampling port status Get the status of a sampling port.
XM get system status Get the current status of the system.
XM get time Retrieve the time of the specified clock.
XM halt partition Terminates a partition.
XM halt system Stop the system.
XM hm open Open the health monitoring log stream.
XM hm read Read a health monitoring log entry.
XM hm seek Sets the read position in the health monitoring stream.
XM hm status Get the status of the health monitoring log stream.
XM idle self Idles the execution of the calling partition.
XM mask irq Obsoleted by XM set irqmask().
XM memory copy Copy copies data from/to address spaces.
XM multicall Execute a sequence of hypercalls.
XM params get PCT Return the address of the PCT.
XM read console Print a string in the hypervisor console.
XM read sampling message Reads a message from the specified sampling port.
XM receive queuing message Receive a message from the specified queuing port.
XM request irq Request to receive an interrupt.
XM reset partition Reset a partition.
XM reset system Reset the system.
XM resume partition Resume the execution of a partition.
XM route irq Link an interrupt with the vector which is generated when the interrupt is issued.
XM send queuing message Send a message in the specified queuing port.
XM set irqmask Mask interrupts.
XM set irqpend Mask interrupts.
XM set page type Changes the type of the physical page pAddr to type.
XM set plan Request a plan switch at the end of the current MAF.
XM set timer Arm a timer.
XM shutdown partition Send a shutdown interrupt to a partition.
XM sparcv8 atomic add Atomic add.
XM sparcv8 atomic and Atomic bitwise AND.
XM sparcv8 atomic or Atomic bitwise OR.
XM sparcv8 clear pil Clear the PIL field of the PSR (allows interrupts).
XM sparcv8 flush cache Flush data cache. Assembly hypercall.
XM sparcv8 flush regwin Save the contents of the register window.
XM sparcv8 flush tlb The TLB cache is invalidated. Assembly hypercall.
XM sparcv8 get flags Replaced by XM sparcv8 get psr() on Sparc processors.
XM sparcv8 get psr Get the ICC and PIL flags from the virtual PSR processor register.
XM sparcv8 inport Read from a hardware I/O port.
XM sparcv8 iret Return from an interrupt.
XM sparcv8 outport Write in a hardware I/O port.

Printed: March 1, 2011 xm-3-usermanual-022c

5.20. Manpages summary 61/119

Hypercall Description

XM sparcv8 set flags Set the ICC flags on the PSR processor register.
XM sparcv8 set pil Set the PIL field of the PSR (disallow interrupts).
XM sparcv8 set psr Set the ICC and PIL flags on the virtual PSR processor register.
XM suspend partition Suspend the execution of a partition.
XM trace event Records a trace entry.
XM trace open Open a trace stream.
XM trace read Read a trace event.
XM trace seek Sets the read position in a trace stream.
XM trace status Get the status of a trace stream.
XM unmask irq Obsoleted by XM clear irqmask().
XM update page32 Writes val in pAddr.
XM write console Print a string in the hypervisor console.
XM write register32 Modify a processor control register.
XM write sampling message Writes a message in the specified sampling port.

xm-3-usermanual-022c Printed: March 1, 2011

This page is intentionally left blank.

Volume 2: User Manual

Chapter 6

Binary Interfaces

This section covers the data types and the format of the files and data structures used by XtratuM.

Only the first section, describing the data types, is needed for the partition developer. The remaining 1180

sections contain material for advanced users. The libxm.a library provides a friendly interface that
hides most of the low level details explained in this chapter.

6.1 Data representation

The data types used in the XtratuM interfaces are compiler and machine cross development indepen-
dent. This is specially important when manipulating the configuration files. These files may be created
in a little-endian system (like the PC) while LEON2 is a big-endian one. 1185

XtratuM follows the next conventions:

Unsigned Signed Size (bytes) Alignment (bytes)

xm u8 t xm s8 t 1 1
xm u16 t xm s16 t 2 4
xm u32 t xm s32 t 4 4
xm u64 t xm s64 t 8 8

Table 6.1: Data types.

These data types has to be stored in big-endian order, that is, the most significant byte standing at the
lower address (0x..00) and the least significant byte standing to the upper address (0x..03).

The “C” declaration which meets these definitions is presented in the next listing:

// Basic types

typedef unsigned char xm_u8_t;

typedef char xm_s8_t;

typedef unsigned short xm_u16_t;

typedef short xm_s16_t;

typedef unsigned int xm_u32_t;

typedef int xm_s32_t;

typedef unsigned long long xm_u64_t;

typedef long long xm_s64_t;

Listing 6.1: /core/include/arch/arch types.h

63/ 119

64/119 Chapter 6. Binary Interfaces

For future compatiblity, most data structures contain version information. It is a xm u32 t data type
with 3 fields: version, subversion and revision. The following macros can be used to manipulate those
fields:

#define XM_SET_VERSION(_ver, _subver, _rev) ((((_ver)&0xFF)<<16)|(((

_subver)&0xFF)<<8)|((_rev)&0xFF))

#define XM_GET_VERSION(_v) (((_v)>>16)&0xFF)

#define XM_GET_SUBVERSION(_v) (((_v)>>8)&0xFF)

#define XM_GET_REVISION(_v) ((_v)&0xFF)

Listing 6.2: /core/include/xmef.h

6.2 Hypercall mechanism

An hypercall is implemented by a trap processor instruction that transfers the control to XtratuM code,
and sets the processor in supervisor mode.1190

There are two kind of hypercalls: normal and assembly. Each type of hypercall use a different trap
number:

#define XM_HYPERCALL_TRAP 0xF0

#define XM_ASMHYPERCALL_TRAP 0xF1

Listing 6.3: /core/include/arch/xm def.h

The XM ASMHYPERCALL TRAP hypercall entry is needed for the XM sparcv8 flush regwin(), XM sparc-

v8 iret() and XM sparcv8 get flags() calls. In this case, the XtratuM entry code does not prepare
the processor to execute “C” code.1195

6.3 Executable formats overview

XtratuM core does not have the capability to “load” partitions. It is assumed that when XtratuM starts its
execution, all the partition code and data required to execute each partition is already in main memory.
Therefore, XtratuM does not contain code to manage executable images. The only information required
by XtratuM to execute a partition is the address of the partition image header (xmImageHdr).

The partition images, as well as the XtratuM image, shall be loaded by a resident software, which acts1200

as the boot loader.

The XEF (XtratuM Executable Format) has been designed as a robust format to copy the partition code
(and data) from the partition developer to the final target system.

The XtratuM image shall also be in XEF format. From the resident software point of view, XtratuM is
just another image that has to be copied into the appropriate memory area.1205

The main features of the XEF format are:

• Simpler than the ELF. The ELF format is a rich and powerful specification, but most of its features
are not required.

• Content checksum. Which allows to detect transmission errors.

• Compress the content. This feature greatly reduce the space of the image; consequently the1210

deploy time.

Printed: March 1, 2011 xm-3-usermanual-022c

6.4. Partition ELF format 65/119

Appl.c

libxm

ABI Data
Structures

ELF file

.xmImageHdr

 partitionControlTable

 partitionInformationTable

xmImageHdr

 partitionControlTable
 partitionInformationTable

.text .data

.DRAM.data

XEF file
xefHdr
Segment 00

Segment 01

Container
xmefContainerHdr

DRAM

Segment 01

Segment 02

xmeformat

xefHdr

Segment 00

xefHdr

Segment 00

XEF file1

Other XEF files
xmpack

XEF 1 segment 02

XEF 1 segment 01

STRAM

Custom 1

Custom 2

rsw

On the host: developer On the target board

 partitionControlTable

 partitionInformationTable

Custom 1
Custom 2

XEF file2

XEF file3

On the host: integrator

sparc­linux­gcc
sparc­linux­ld

deploy

XEF XtratuM

xefHdr

XtratuM

Figure 6.1: Executable formats.

• Encrypt the content. Not implemented.

• Partitions can be placed in several non-contiguous memory areas.

The container is a file which contains a set of XEF files. It is like a tar file (with important internal dif-
ferences). The resident software shall be able to manage the container format to extract the partitions 1215

(XEF files); and also the XEF format to copy them to the target memory addresses.

The signature fields, are constants used to identify and locate the data structures. The value that shall
contain these fields on each data structure is defined right above the corresponding declaration.

6.4 Partition ELF format

A partition image contains all the information needed to “execute” the partition. It does not have
loading or booting information. It contains one image header structure, one or more partition header 1220

structures, as well as the code and data that will be executed.

Since multiple partition headers is an experimental feature (to support multiprocessor in a partition),
we will assume in what follows that a partition file contains only one image header structure and one
partition header structure.

Note: all the addresses of partition image are absolute addresses which refer to the target RAM 1225

memory locations.

6.4.1 Partition image header

The partition image header is a data structure with the following fields:

struct xmImageHdr {

#define XMEF_PARTITION_MAGIC 0x24584d69 // $XMi

xm_u32_t sSignature;

xm_u32_t compilationXmAbiVersion; // XM’s abi version

xm_u32_t compilationXmApiVersion; // XM’s api version

xm-3-usermanual-022c Printed: March 1, 2011

66/119 Chapter 6. Binary Interfaces

xm_u32_t noCustomFiles;

struct xefCustomFile customFileTab[CONFIG_MAX_NO_CUSTOMFILES];

xm_u32_t eSignature;

};

Listing 6.4: /core/include/xmef.h

sSignature and eSignature: Holds the start and end signatures which identifies the structure as a
XtratuM partition image.

compilationXmAbiVersion: XtratuM ABI version used to compile the partition. That is, the ABI
version of the libxm and other accompanying utilities used to build the XEF file.1230

compilationXmApiVersion: XtratuM API version used to compile the partition. That is, the API
version of the libxm and other accompanying utilities used to build the XEF file.

The current values of these fields are:

#define XM_ABI_VERSION 3

#define XM_ABI_SUBVERSION 1

#define XM_ABI_REVISION 0

#define XM_API_VERSION 3

#define XM_API_SUBVERSION 1

#define XM_API_REVISION 2

Listing 6.5: /core/include/hypercalls.h

Note that these values may be different to the API and ABI versions of the running XtratuM. This
information is used by XtratuM to check that the partition image is compatible.

noCustomFiles: The number of extra files accompanying the image. If the image were Linux, then1235

one of the modules would be the initrd image. Up to CONFIG MAX NO FILES can be attached. The
moduleTab table contains the locations in the RAM’s address space of the partition where the
modules shall be copied (if any). See section 5.18.

customFileTab: Table information about the customisation files.

struct xefCustomFile {

xmAddress_t sAddr;

xmSize_t size;

};

Listing 6.6: /core/include/xmef.h

sAddr: Address where the customisation file shall be loaded.

size: Size of the customisation file.1240

The address where the custom files are loaded shall belong to the partition.

The xmImageHdr structure has to be placed in a section named “.xmImageHdr”. An example of how
the header of a partition can be created is shown in section 5.4.

The remainder of the image is free to the partition developer. There is not a predefined format or
structure of where the code and data sections shall be placed.1245

Printed: March 1, 2011 xm-3-usermanual-022c

6.4. Partition ELF format 67/119

6.4.2 Partition control table (PCT)

In order to minimize the overhead of the para-virtualised services, XtratuM defines a special data
structure which is shared between the hypervisor and the partition called Partition control table (PCT).
There is a PCT for each partition. XtratuM uses the PCT to send relevant operating information to the
partitions. The partition is only allowed to read.

typedef struct {

xm_u32_t magic;

xm_u32_t xmVersion; // XM version

xm_u32_t xmAbiVersion; // XM’s abi version

xm_u32_t xmApiVersion; // XM’s api version

xm_u32_t resetCounter;

xm_u32_t resetStatus;

xm_u32_t cpuKhz;

xmId_t id;

xm_u32_t flags;

xm_u32_t hwIrqs; // Hw interrupts belonging to the partition

xm_s32_t noPhysicalMemAreas;

xm_u8_t name[CONFIG_ID_STRING_LENGTH];

xm_u32_t iFlags;

xm_u32_t hwIrqsPend; // pending hw irqs

xm_u32_t hwIrqsMask; // masked hw irqs

xm_u32_t extIrqsPend; // pending extended irqs

xm_u32_t extIrqsMask; // masked extended irqs

struct pctArch arch;

struct {

xm_u32_t noSlot:16, reserved:16;

xm_u32_t id;

xm_u32_t slotDuration;

} schedInfo;

xm_u16_t trap2Vector[NO_TRAPS];

xm_u16_t hwIrq2Vector[CONFIG_NO_HWIRQS];

xm_u16_t extIrq2Vector[XM_VT_EXT_MAX];

} partitionControlTable_t;

Listing 6.7: /core/include/guest.h

The libxm call XM params get PCT() returns a pointer to the PCT. 1250

The architecture dependent part is defined in:

struct pctArch {

xmAddress_t tbr;

#ifdef CONFIG_MMU

xmAddress_t ptdL1;

xm_u32_t faultStatusReg;

xm_u32_t faultAddressReg;

#endif

};

Listing 6.8: /core/include/arch/guest.h

signature: Signature to identity this data structure as a PIT.

xm-3-usermanual-022c Printed: March 1, 2011

68/119 Chapter 6. Binary Interfaces

xmAbiVersion: The Abi version of the currently running XtratuM. This value is filled by the running
XtratuM.

xmApiVersion: The Api version of the currently running XtratuM. This value is filled by the running
XtratuM.1255

resetCounter: A counter of the number of partition resets. This counter is incremented when the
partition is WARM reset. On a COLD reset it is set to zero.

resetStatus: If the partition had been reset by a XM reset partition() hypercall, then the value of
the parameter status is copied in this field. Zero otherwise.

id: The identifier of the partition. It is the unique number, specified in the XM CF file, to unequivocally1260

identify a partition.

hwIrqs: A bitmap of the hardware interrupts allocated to the partition. Hardware interrupts are allo-
cated to the partition in the XM CF file.

noPhysicalMemoryAreas: The number of memory areas allocated to the partition. This value defines
the size of the physicalMemoryAreas array.1265

name: Name of the partition.

hwIrqsPend: Bitmap of the hardware interrupts allocated to the partition delivered to the partition.

extIrqsPend: Bitmap of the extended interrupts allocated to the partition delivered to the partition.

hwIrqsMask: Bitmap of the extended interrupts allocated to the partition delivered to the partition.

extIrqsMask:1270

In the current version there is no specific architecture data.

6.5 XEF format

The XEF is a wrapper for the files that may be deployed in the target system. There are three kind of
files:

• Partition images.

• The XtratuM image.1275

• Customisation files.

An XEF file has an header (see listing 6.9) and a set of segments. The segments, like in ELF, represent
blocks of memory that will be loaded in RAM.

The tool xmeformat converts from ELF or plain data files to XEF format, see chapter 9.

struct xefHdr {

#define XEF_SIGNATURE 0x24584546

xm_u32_t signature;

xm_u32_t version;

#define XEF_DIGEST 0x1

#define XEF_COMPRESSED 0x4

#define XEF_RELOCATABLE 0x10

#define XEF_CONTENT_MASK 0xc0

Printed: March 1, 2011 xm-3-usermanual-022c

6.5. XEF format 69/119

#define XEF_CONTENT_HYPERVISOR 0x00

#define XEF_CONTENT_PARTITION 0x40

#define XEF_CONTENT_CUSTOMFILE 0x80

//#define XEF_CONTENT_RESERVED 0xc0

xm_u32_t flags;

xm_u8_t digest[XM_DIGEST_BYTES];

xm_u8_t payLoad[XM_PAYLOAD_BYTES];

xm_u32_t fileSize;

xmAddress_t segmentTabOffset;

xm_s32_t noSegments;

xmAddress_t customFileTabOffset;

xm_s32_t noCustomFiles;

xmAddress_t imageOffset;

xm_u32_t imageLength;

xm_u32_t deflatedImageLength;

xmAddress_t xmImageHdr;

xmAddress_t entryPoint;

#ifdef CONFIG_IA32

xmAddress_t relOffset;

xm_s32_t noRel;

xmAddress_t relaOffset;

xm_s32_t noRela;

#endif

};

Listing 6.9: /core/include/xmef.h

signature: A 4 bytes word to identify the file as an XEF format. 1280

version: Version of the XEF format.

flags: Bitmap of features present in the XEF image. It is a 4 bytes word. The existing flags are:

XEF DIGEST: If set, then the digest field is valid and shall be used to check the integrity of the
XEF file.

XEF COMPRESSED: If set, then the partition binary image is compressed. 1285

XEF CIPHERED: (future extension) to inform whether the partition binary is encrypted or not.

XEF CONTENT: Specifies what kind of file is.

digest: when the XEF DIGEST flag is set, this field holds the result of processing all the XEF file (sup-
posing the digest field set to 0). The MD5 algorithm is used to calculate this field.

Despite the well known security flaws, we selected the MD5 digest algorithm because it has a 1290

reasonable trade-off between calculation time and the security level1. Note that the digest field
is used to detect not deliberate modifications rather than intentional attacks. In this scenario, the
MD5 is a good choice.

1According to our tests, the time spent by more sophisticated digest algorithms such as SHA-2, Tiger or Whirlpool in the
LEON3 processor was not acceptable. As illustration, 100 Kbytes took several seconds to be digested by a SHA-2 algorithm.

xm-3-usermanual-022c Printed: March 1, 2011

70/119 Chapter 6. Binary Interfaces

payLoad: This field holds 16 bytes which can freely be used by the partition supplier. It could be used
to hold information such as partition’s version, etc.1295

The content of this field is used neither by XtratuM nor the resident software.

fileSize: XEF file size in bytes.

segmentTabOffset: Offset to the section table.

noSegments: Number of segments held in the XEF file. In the case of a customisation file, there will
be only one segment.1300

customFileTabOffset: Offset to the custom files table.

noCustomFiles: Number of custom files.

imageOffset: Offset to the partition binary image.

imageLength: Size of the partition binary image.

deflatedImageLength: When the XEF COMPRESS flag is set, this field holds the size of the uncom-1305

pressed partition binary image.

xmImageHdr: Pointer to the partition image header structure (xmImageHdr). The xmeformat tool copies
the address of the corresponding section in this filed.

entryPoint: Address of the starting function.

Additionally, analogically to the ELF format, XEF contemplates the concept of segment, which is, a1310

portion of code/data with a size and a specific load address. A XEF file includes a segment table (see
listing 6.10) which describes each one of the sections of the image (custom data XEF files have only
one section).

struct xefSegment {

xmAddress_t startAddr;

xm_u32_t fileSize;

xm_u32_t deflatedFileSize;

xmAddress_t offset;

};

Listing 6.10: /core/include/xmef.h

startAddr: Address where the segment shall be located while it is being executed. This address is the
one used by the linker to locate the image. If there is not MMU, then physAddress=virtAddr.1315

fileSize: The size of the segment within the file. This size could be different from the memory
required to be executed (for example a BSS usually requires more memory once loaded into
memory).

deflatedFileSize: When the XEF COMPRESS flag is set, this field holds the size of the segment
when uncompressed.1320

offset: Location of the segment expressed as an offset in the partition binary image.

Printed: March 1, 2011 xm-3-usermanual-022c

6.6. Container format 71/119

6.5.1 Compression algorithm

The compression algorithm implemented is Lempel-Ziv-Storer-Szymanski (LZSS). It is a derivative of
LZ77, that was created in 1982 by James Storer and Thomas Szymanski. A detailed description of the
algorithm appeared in the article “Data compression via textual substitution” published in Journal of
the ACM. 1325

The main features of the LZSS are:

1. Fairly acceptable trade-off between compression rate and decompression speed.

2. Implementation simplicity.

3. Patent-free technology.

Aside from LZSS, other algorithms which were regarded were: huffman coding, gzip, bzip2, LZ77, 1330

RLE and several combinations of them. Table 6.2 sketches the results of compressing XtratuM’s core
binary with some of these compression algorithms.

Algorithm Compressed size Compression rate (%)

LZ77 43754 44.20%
LZSS 36880 53.01%
Huffman 59808 23.80%
Rice 32bits 78421 0.10%
RLE 74859 4.60%
Shannon-Fano 60358 23.10%
LZ77/Huffman 36296 53.76%

Table 6.2: Outcomes of compressing the xm core.bin (78480 bytes) file.

6.6 Container format

A container is a file which contains a set of XEF files.

The tool xmpack manages container files, see chapter 9.

A component is an executable binary (hypervisor or partition) jointly with associated data (configura- 1335

tion or customization file). The XtratuM component contains the files: xm core.bin and XM CT.bin. A
partition component is formed by the partition binary file and zero or more customization files.

XtratuM is not a boot loader. There shall be an external utility (the resident software or boot loader)
which is in chage of coping the code and data of XtratuM and the partition from a permanent memory
into the RAM. Therefore, the the container file is not managed by XtratuM but by the resident software, 1340

see chapter 7.

Note also, that he container does not have information regarding where the components shall be
loaded into RAM memory. This information is contained in the header of the binary image of each
component.

The container file is like a packed filesystem which contains several the file metadata (name of the 1345

files) and the content of each file. Also, which file contans the executable image and the customisation
data of each partition is specified.

The container has the following elements:

xm-3-usermanual-022c Printed: March 1, 2011

72/119 Chapter 6. Binary Interfaces

1. The header (xmefContainerHdr structure). A data structure which holds pointers (in the form of
offsets) and the sizes to the remainder sections of the file.1350

2. The component table section, which contains an array of xmefComponent structures. Each element
contains information of one component.

3. The file table section, which contains an array of files (xmefFile structure) in the container.

4. The string table section. Contains the names of the files of the original executable objects. This is
currently used for debugging.1355

5. The file data table section, with the actual data of the executable (XtratuM and partition images)
and configuration files.

The container header has the following fields:

struct xmefContainerHdr {

xm_u32_t signature;

#define XM_PACKAGE_SIGNATURE 0x24584354 // $XCT

xm_u32_t version;

#define XMPACK_VERSION 3

#define XMPACK_SUBVERSION 0

#define XMPACK_REVISION 0

xm_u32_t flags;

#define XMEF_CONTAINER_DIGEST 0x1

xm_u8_t digest[XM_DIGEST_BYTES];

xm_u32_t fileSize;

xmAddress_t partitionTabOffset;

xm_s32_t noPartitions;

xmAddress_t fileTabOffset;

xm_s32_t noFiles;

xmAddress_t strTabOffset;

xm_s32_t strLen;

xmAddress_t fileDataOffset;

xmSize_t fileDataLen;

};

Listing 6.11: /core/include/xmef.h

signature: Signature field.

version: Version of the package format.

flags:1360

digest: Not used. Currently the value is zero.

fileSize: The size of the container.

partitionTabOffset: The offset (relative to the start of the file) to the partition array section.

noPartitions: Number of partitions plus one (XtratuM is also a component) in the container.

componentOffset: The offset (relative to the start of the file) to the component’s array section.1365

fileTabOffset: The offset (relative to the start of the container file) to the files’s array section.

noFiles: Number of files (XtratuM core, the XM CT file, partition binaries, and partition-customization
files) in the container.

Printed: March 1, 2011 xm-3-usermanual-022c

6.6. Container format 73/119

strTabOffset The offset (relative to the start of the container file) to the strings table.

strLen The length of the strings table. This section contains all names of the files. 1370

fileDataOffset The offset (relative to the start of the container file) to the file data section.

fileDataLen The length of the file data section. This section contains all the contents of all the
components.

Each entry of the partition table section describes all the XEF files that are part of each partition.
Which contains the following fields:

struct xmefPartition {

xm_s32_t id;

xm_s32_t file;

xm_u32_t noCustomFiles;

xm_s32_t customFileTab[CONFIG_MAX_NO_CUSTOMFILES];

};

Listing 6.12: /core/include/xmef.h

id: The identifier of the partition.

file: The index into the file table section of the XEF partition image. 1375

noCustomFiles: Number of customisation files of this component, including.

customFileTab: List of custom file indexes.

The metadata of each file is store in the file table section:

struct xmefFile {

xmAddress_t offset;

xmSize_t size;

xmAddress_t nameOffset;

};

Listing 6.13: /core/include/xmef.h

offset: The offset (relative to the start of the file data table section) to the data of this file in the
container.

size: The size reserved to store this file. It is possible to define the size reserved in the container to 1380

store a file independently of the actual size of the file. See the section 9.3.1 tool.

nameOffset: Offset, relative to the start of the strings table, of the name of the file.

The strings table contains the list of all the file names.

The file data section contains the data (with padding if fileSize<=size) of the files.

xm-3-usermanual-022c Printed: March 1, 2011

This page is intentionally left blank.

Volume 2: User Manual

Chapter 7

Booting

PROM 256Mb SRAM 4Mb

Custom_CT 2

Partition2.xef
boot=”no”

Custom_CT 1

Partition1.xef
boot=”yes”

supervisor=”yes”

XM_CT.xef

xm_core.o

xmefPackage
sections

xm_core.xef

xmefPackage
sections

XM_CT.xef

Partition1.xef

Custom_CT 1

Partition2.xef

Custom_CT 2

Resident swResident sw
xm_core.xef

Partition1.xef

Partition 2.xef

1

3

2
4

5

0x0000 0000

0x1FFF FFFF

0x4000 0000

0x403F FFFF

B
ur

n
in

 P
R

O
M0

6

XM_reset_parition()

C
on

ta
in

er
re

si
de

nt
_s

w
.o

Figure 7.1: Booting sequence.

In the standard boot procedure of the LEON2 processor, the program counter register is initialized 1385

with the address 0x00000000. Contrarily to other computers, the PROM of the board does not have any
kind of resident software-like booter1 that takes the control of the processor after the reset.

We have developed a small booting code called resident software, which is in charge of the initial steps
of booting the computer. This software is not part of the container produced by the xmpack tool. It is
prepended to the container by the burning script. 1390

The board has two kind of RAM memory: SRAM (4Mb) and SDRAM (128Mb).

1Known as BIOS in the personal computer area.

75/ 119

76/119 Chapter 7. Booting

7.1 Boot configuration

The resident software is in charge of loading into memory XtratuM, its configuration file (XM CT) and
any partition jointly with its customisation file as found in the container. The information hold by the
XM CT file is used to load any partition image. Additionally, the resident software informs XtratuM which1395

partitions have to be booted.

After starting, XtratuM assumes that the partitions informed as ready-to-be-booted are in RAM/SRAM
memory, setting them in running state right after it finishes its booting sequence

If a partition’s code is not located within the container, then XtratuM sets the partition in HALT state
until a system partition resets it by using XM reset partition() hypercall. In this case, the RAM image1400

of the partition shall be loaded by a system partition through the XM memory copy() hypercall.

Note that there may be several booting partitions. All those partitions will be started automatically at
boot time.

The boot sequence is sketched in figure 7.1.

zj0 The deployment tool to burn the PROM of the board writes first the resident software and right after1405

it the container, which should contain the XtratuM core and the booting partitions components.
Note that the container can also contain the non-booting partitions.

zj1 When the processor is started (reset) the resident software is executed. It is a small code that
performs the following actions:

1. Initializes a stack (required to execute “C” code).1410

2. Installs a trap handler table (only for the case that its code would generate a fault, XtratuM
installs a new trap handler during its initialisation).

3. Checks that the data following the resident software in the PROM is a container (a valid
signature), and seeks the XtratuM hypervisor through container (a valid signature).

4. Copies the XtratuM hypervisor and booting partitions into RAM memory (zj2).1415

5. The address of the container (which contains the ctCompTab) is copied in the %g2 processor
register. Jumps to the entry point of the hypervisor in RAM memory.

zj3 XtratuM assumes no initial processor state. So, the first code has to be written in assembly
(code/kernel/sparcv8/head.s), and performs the next actions: the %g2 register is saved in
a global “C” variable; general purpose registers are cleared; memory access rights are cleared;1420

PSR2, WIM3, TBR4 and Y5 processor control registers are initialized; sets up a working stack; and
jumps to “C” code (code/kernel/setup.c).

The setup() function carries out the following actions:

1. Initializes the internal console.

2. Initializes the interrupt controller.1425

3. Detects the processor frequency (information extracted from the XML configuration file).

4. Initializes memory manager (enabling XtratuM to keep track of the use of the physical mem-
ory).

2PSR: Processor Status Register.
3WIM: Window Invalid Mask.
4TBF: Trap Base Register.
5Y: Extended data register for some arithmetic operations.

Printed: March 1, 2011 xm-3-usermanual-022c

7.1. Boot configuration 77/119

5. Initializes hardware and virtual timers.

6. Initializes the scheduler. 1430

7. Initializes the communication channels.

8. Booting partitions are set in NORMAL state and non-booting ones are set in HALT state.

9. Finally, the setup function calls the scheduler and becomes into the idle task.

zj4 Partition code is executed according to the configured plan.

zj5 A system partition can load from PROM or other source (serial line, etc.) the image of other 1435

partitions.

zj6 The new ready partition is activated via a XM reset partition() service.

xm-3-usermanual-022c Printed: March 1, 2011

This page is intentionally left blank.

Volume 2: User Manual

Chapter 8

Configuration

This section describes how XtratuM is configured. There are two levels of configuration. A first level
which affects the source code to customise the resulting XtratuM executable image. Since XtratuM does
not use dynamic memory to setup internal data structures, most of these configuration parameters are 1440

related to the size, or ranges, of the statically created data structures (maximum number of partitions,
channels, etc..).

The second level of configuration is done via an XML file. This file configures the resources allocated
to each partition.

8.1 XtratuM source code configuration (menuconfig)

The first step in the XtratuM configuration is to configure the source code. This task is done using the 1445

same tool than the one used in Linux, which are commonly called “make menuconfig”.

There are two different blocks that shall be configured: 1) XtratuM source code; and 2) the resident
sofware. The configuration menu of each block is presented one after the other when executed the
“$ make menuconfig” from the root source directory. The selected configuration are stored in the files
core/.config and /user/bootloaders/rsw/.config for XtratuM and the resident software respec- 1450

tively.

The next table lists all the XtratuM configuration options and its default values. Note that since there
are logical dependencies between some options, the menuconfig tool may not show all the options.
Only the options that can be selected are presented to the user.

There has been major changes from version 2.2 to 3.x in the source code configuration. 1455

Parameter Type Default value

Processor

SPARC cpu choice [Leon3]
Board choice [TSim] [GR-CPCI-XC4V] [GR-XC3S-1500]
SPARC memory protection schema choice [MMU]
Support AMBA bus PnP bool y

Enable VMM update hypercalls bool y

Enable cache bool y

Enable cache snoop bool n

Continues...

79/ 119

80/119 Chapter 8. Configuration

Parameter Type Default value
Enable instruction burst fetch bool n

Flush cache after context switch bool n

Physical memory layout

XM load address hex 0x40000000

Debug and profiling support bool y

Max. identifier length (B) int 32

Hypervisor

Kernel stack size (KB) int 8

System integrity bool y

Context switch threshold (usec) int 200

Drivers

Enable UART rx interrupt bool n

Enable UART flow control bool n

DSU samples UART port bool n

Enable VGA support bool n

Objects

Console initial buffer length int 256

Enable XM/partition status accounting bool n

Sparc cpu: Processor model.

Board: Enables the specific board features: write protection units, timers, UART and interrupt con-
troller.

SPARC memory protection schema: Select the processor mechanism that will be used to implement
memory protection. If MMU is available then it is the best choice. With WPR, only write protection1460

can be enforced.

Enable cache: If selected, the processor cache is enabled. All partitions will be executed with cache
enabled unless explicitly disabled on each partition through the XM CF file.

If this option is not selected, the cache memory is disabled. Neither XtratuM nor the partitions
will be able to use the cache.1465

Flush cache after context switch: Forces a cache flush after a partition context switch.

DSU samples UART port: If the UART port used to print console messages is also used by the DSU
(Debugging Support Unit), then this option shall be set.

If the DSU is used, then the control bits of the UART does not change. In this case, bytes are sent
with a timeout.1470

XtratuM load address: Physical RAM address where XtratuM shall be copied. This value shall be the
same than the one specified in the XM CF file.

Console initial buffer length: Size of the internal console buffer. This buffer it used to store the mes-
sages written by XtratuM or by partitions using the XM console write() hypercall. The larger
the buffer, the lower the chances of loosing data.1475

Enable voluntary preemption support:

Enable experimental features: Enable this option to be able to select experimental ones. This option
does not do anything on itself, just shows the options marked as experimental.

Printed: March 1, 2011 xm-3-usermanual-022c

8.2. Resident software source code configuration (menuconfig) 81/119

Kernel stack size (KB): Size of the stack allocated to each partition. It is the stack used by XtratuM
when attending the partition hypercalls. 1480

Do not change (reduce) this value unless you know what you are doing.

Debug and profiling support: XtratuM is compiled with debugging information (gcc flag “-ggdb”)
and assert code is included. This option should be used only during the development of the
XtratuM hypervisor.

Maximum identifier length (B): The maximum string length (including the terminating “0x0” char- 1485

acter) of the names: partition name, port name, plan, etc. Since the names are only used for
debugging, 16 characters is a fair number.

GCoverage support: Experimental.

Enable UART support: If enabled, XtratuM will use the UART to output console messages; otherwise
the UART can be used by a partition. 1490

Enable XM/partition status accounting: Enable this option to colled statistical information of Xtra-
tuM itself and partitions.

Note that this feature increases the overhead of most of the XtratuM operations.

8.2 Resident software source code configuration (menuconfig)

The resident software (RSW) configuration parameters are hard-coded in the source code in order to
generate a self-contained stand alone executable code. 1495

After the configuration of the XtratuM source code, the “$ make menuconfig” shows the RWS config-
uration menu. The selected configuration is stored in the file user/bootloaders/rsw/.config.

The following parameters can be configured:

Parameter Type Default value

RSW memory layout

Read-only section addresses hex 0x40200000

Read/write section addresses hex 0x40090000

CPU frequency (KHz) int 50000

Enable UART support choice [UART1] [UART2]
UART baud rate int 115200

Stack size (KB) int 8

Stand-alone version bool no

Container physical location address hex 0x4000

Stack size (KB):

Read-only section addresses: RSW memory layout. Read-only area. The resident software will be 1500

compiled to use this area.

Read/write section addresses: RSW memory layout. Read/write area used by the resident software.

CPU frequency (KHz): The processor frequency is passed to XtratuM via the XM CF file, but in the
case of the RSW it has to be specified in the source code, since it has no run-time configuration.
The processor frequency is used to configure the UART clock. 1505

Enable UART support: Select the serial line to write messages to.

xm-3-usermanual-022c Printed: March 1, 2011

82/119 Chapter 8. Configuration

UART baud rate: The baud rate of the UART. Note that the baud rate used by XtratuM is configured
in the XM CF file, and not in the source code configuration.

Stand-alone version: If not set, then the resident software shall be linked jointly with the container.
That is, the final resident software image shall contain, as data, the container.1510

If set, then the container is not linked with the resident software. The address where the container
will be copied in RAM is specified by the next option:

Container physical location address: Address of the container. In case of the stand-alone version.

8.2.1 Memory requirements

The memory footprint of XtratuM is independent of the workload (number of partitions, channels,
etc.) The memory needed depends only on actual workload defined in the XM CF file. The size of the1515

compiled configuration provides an accurate estimation of the memory what will use XtratuM to run it.
Note that it is not the size of the file, but the memory required by all the sections (including those not
allocatable ones: .bss).

The resident software can be executed in ROM or RAM memory (if the ROM technology allows to run
eXecute-in-Place XiP code). The resident software has no initialised data segment, only the .text and1520

.rodata segments are required (the .got and .eh frame segments are not used). The memory footprint
of the RSW depends on whether the debug messages are enabled or not; and it can be obtained from
the final resident software code (the file created with the build rsw helper utility) using the readelf

utility.

The next example shows where the size of the RSW code is printed (column labeled MemSiz):1525

sparc-linux-readelf -l resident_sw

Elf file type is EXEC (Executable file)

Entry point 0x4020102c

There are 5 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

LOAD 0x0000d4 0x00004000 0x00004000 0x196f0 0x196f0 RW 0x1 // 00 segment

LOAD 0x0197c4 0x40090000 0x0001d6f0 0x00048 0x00048 RW 0x4 // 01 segment

LOAD 0x019808 0x40090048 0x40090048 0x00000 0x02000 RW 0x8 // 02 segment

LOAD 0x019810 0x40200000 0x40200000 0x01f44 0x01f44 R E 0x8 // 03 segment

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4 // 04 segment

Section to Segment mapping:

Segment Sections...

00 .container

01 .got .eh_frame

02 .bss

03 .text .rodata

04

Listing 8.1: Resident software memory footprint example.

The next table summarises the size of the resident software for different configurations:

Board type Debug messages size

LEON3 disabled 0x01f44

LEON3 enabled 0x01ff4

LEON2 disabled 0x01f44

LEON2 enabled 0x01ff4

Printed: March 1, 2011 xm-3-usermanual-022c

8.3. Hypervisor configuration file (XM CF) 83/119

8.3 Hypervisor configuration file (XM CF)

The XM CF file defines the system resources, and how they are allocated to each partition.

For an exact specification of the syntax (mandatory/optional elements and attributed, and how many
times an element can appear) the reader is referred to the XML schema definition in the Appendix A.

8.3.1 Data representation and XPath syntax

When representing physical units, the following syntax shall be used in the XML file: 1530

Time: Pattern: “[0-9]+(.[0-9]+)?([mu]?[sS])”
Examples of valid times:

9s # nine seconds.

10ms # ten milliseconds.

0.5ms # zero point five milliseconds. 1535

500us # five hundred microseconds =0.5ms

Size: Pattern: “[0-9]+(.[0-9]+)?([MK]?B)”
Examples of valid sizes:

90B # ninety bytes.

50KB # fifty Kilo bytes =(50*1024) bytes. 1540

2MB # two mega bytes =(2*1024*1024) bytes.

2.5KB # two point five kilo bytes =2560B.

It is advised not to use the decimal point on sizes.

Frequency: Pattern: “[0-9]+(.[0-9]+)?([MK][Hh]z)”
Examples of valid frequencies: 1545

80Mhz # Eighty mega hertz = 80000000 hertz.

20000Khz # Twenty mega hertz = 20000000 hertz.

Boolean: Valid values are: “yes”, “true”, “no”, “false”.

Hexadecimal: Pattern: “0x[0-9a-fA-F]+”
Examples of valid numbers: 1550

0xFfffFfff, 0x0, 0xF1, 0x80

An XML file is organised as a set of nested elements, each element may contain attributes. The XPath
syntax is used to refer to the objects (elements and attributes). Examples:

/SystemDescription/PartitionTable The element PartitionTable contained inside the element
SystemDescription, which is the root element (the starting slash symbol). 1555

/SystemDescription/@name Refers to the attribute ./@name of the element SystemDescription.

./Trace/@bitmask Refers to the attribute ./@bitmask of a ./Trace element. The location of the
element ./Trace in the xml element hierarchy is relative to the context where the reference
appears.

xm-3-usermanual-022c Printed: March 1, 2011

http://www.w3.org/TR/xpath.html

84/119 Chapter 8. Configuration

http://www.xtratum.org/xm-3.x

all of

ProcessorTableDevices MemoryLayout

(anonymous)

Attrs

direction: direction_t

name: idString_t

type: portType_t

Uart

(anonymous)

Attrs

baudRate: positiveInteger

id: idString_t

name: idString_t

rxBufferLen: positiveInteger

memoryArea_e

sequence of

processor_e

Attrs

features: processorFeaturesList_t

frequency: freqUnit_t

id: id_t

all of

Range

(anonymous)

Attrs
base: hex_t

noPorts: positiveInteger

hwResources_e

all of

(anonymous)

(anonymous)

Attrs
duration: timeUnit_t

period: timeUnit_t

XMHypervisor

hypervisor_e

Attrs
console: idString_t

healthMonitorDevice: idString_t

Area IoPorts

ioPorts_e

Region

(anonymous)

Attrs

size: sizeUnit_t

start: hex_t

type: memRegion_t

Source

ipcPort_e

Attrs

partitionId: id_t

partitionName: idString_t

portName: idString_t

sequence of

Port

ResidentSw

rsw_e

PortTable

partitionPorts_e

cyclicPlan_e

sequence of

(anonymous)

Attrs lines: hwIrqIdList_t

sequence of

choice of

sequence of

1..256

PhysicalMemoryAreas

Source

devices_e

plan_e

Attrs
id: id_t

majorFrame: timeUnit_t

sequence of

(anonymous)

Attrs
address: hex_t

mask: hex_t

all of

HealthMonitorPhysicalMemoryAreas Trace

all of sequence of

choice of

memoryLayout_e

sequence of

http://www.xtratum.org/xm-3.x

(anonymous)

Attrs
maxMessageLength: sizeUnit_t

refreshPeriod: timeUnit_t

sequence of

Destination

(anonymous)

Attrs

action: hmAction_t

log: yntf_t

name: hmString_t

all of

HwDescription PartitionTable Channels

Event

Slot

(anonymous)

Attrs

duration: timeUnit_t

id: id_t

partitionId: id_t

start: timeUnit_t

sequence of

sequence of

Processor

all of

TemporalRequirementsPhysicalMemoryAreas TraceHealthMonitor HwResources

hwDescription_e

Interrupts

choice of

MemoryBlock sequence of

SamplingChannel

Destination

QueuingChannel

(anonymous)

Attrs
maxMessageLength: sizeUnit_t

maxNoMessages: positiveInteger

healthMonitor_e all of

CyclicPlanTable

partition_e

Attrs

console: idString_t

flags: partitionFlagsList_t

id: id_t

name: idString_t

(anonymous)

sequence of

SystemDescription

(anonymous)

Attrs
name: idString_t

version: version_t

Partition

(anonymous)

Attrs

name: idString_t

size: sizeUnit_t

start: hex_t

trace_e

Attrs
bitmask: hex_t

device: idString_t

Restricted

Plan

(anonymous)

Attrs

flags: memAreaFlagsList_t

mappedAt: hex_t

size: sizeUnit_t

start: hex_t

channels_e

Figure 8.1: XML Schema diagram.

Printed: March 1, 2011 xm-3-usermanual-022c

8.3. Hypervisor configuration file (XM CF) 85/119

8.3.2 The root element: /SystemDescription

Figure 8.1 is a graphical representation of the schema of the XML configuration file. The types of the 1560

attributes are not represented, see the appendix A for the complete schema specification. An arrow
ended with circle are optional elements.

Figure 8.2 on page 86 is a compact graphical representation of the nested structure a sample XM CF

configuration file (the listing A.2 is the actual xml file for this representation). Solid-lined boxes repre-
sent elements. Dotted boxes contain attributes. The nested boxes represent the hierarchy of elements. 1565

The root element is “/SystemDescription”, which contain the mandatory ./@version, ./@name
and ./@xmlns attributes. The xmlns name space shall be “http://www.xtratum.org/xm-2.3”.

There are five second-level elements:

/SystemDescription/XMHypervisor Specifies the board resources (memory, and processor plan)
and the hypervisor health monitoring table. 1570

/SystemDescription/ResidentSw This is an optional element which for providing information to
XtratuM about the resident software.

/SystemDescription/PartitionTable This is a container element which holds all the ./partition
elements.

/SystemDescription/Channels A sequence of channels which define port connections. 1575

/SystemDescription/HwDescription Contain the configuration of physical and virtual resources.

8.3.3 The /SystemDescription/XMHypervisor element

There are two optional attributes ./@console and ./@healthMonitoringDevice. The values of these
attributes shall be the name of a device defined in the /SystemDescription/HwDescription/Devices
section.

Mandatory elements: 1580

./PhysicalMemoryAreas Sequence of memory areas allocated to XtratuM.

Optional elements:

./HealthMonitoring Contains a sequence of health monitoring event elements.

Not all HM actions can be associated with all HM events. Consult the allowed actions in the
“Volume 4: Reference Manual”. 1585

./Trace Defines where to store the traces messages emitted by XtratuM (the value of the attribute
./@device shall be a the name of a device defined in /SystemDescription/Devices); and the
hexadecimal bit mask to filter out which traces will not be stored (./@bitmask).

A health monitoring event element contains the following attributes:

./event/@name The event’s name. Below is the list of available events:

<xs:simpleType name="hmString_t">

<xs:restriction base="xs:string">

<xs:enumeration value="XM_HM_EV_INTERNAL_ERROR"/>

<xs:enumeration value="XM_HM_EV_UNEXPECTED_TRAP"/>

<xs:enumeration value="XM_HM_EV_PARTITION_ERROR"/>

<xs:enumeration value="XM_HM_EV_PARTITION_INTEGRITY"/>

xm-3-usermanual-022c Printed: March 1, 2011

86/119 Chapter 8. Configuration

SystemDescription name: hello_world xmlns: http://www.xtratum.org/xm-3.x version: 1.0.0

HwDescription

ProcessorTable

Processor frequency: 50Mhz id: 0

Sched

CyclicPlan

Plan name: init majorFrame: 2ms

Slot partitionId: 0 duration: 1ms id: 0 start: 0ms

Slot partitionId: 1 duration: 1ms id: 1 start: 1ms

Devices

Uart name: Uart baudRate: 115200 id: 0

MemoryBlock name: MemDisk0 size: 256KB start: 0x40100000

MemoryBlock name: MemDisk1 size: 256KB start: 0x40150000

MemoryBlock name: MemDisk2 size: 256KB start: 0x40200000

MemoryLayout

Region type: stram size: 4MB start: 0x40000000

XMHypervisor console: Uart

PhysicalMemoryAreas

Area flags: uncacheable size: 512KB start: 0x40000000

HealthMonitor

Event name: XM_HM_EV_INTERNAL_ERROR action: XM_HM_AC_IGNORE log: yes

Trace bitmask: 0xabcd device: MemDisk0

ResidentSw

PhysicalMemoryAreas

Area flags: shared size: 1MB start: 0x40200000

PartitionTable

Partition name: Partition1 flags: system console: Uart id: 0

PhysicalMemoryAreas

Area size: 512KB start: 0x40080000

Area flags: shared size: 1MB start: 0x40200000

TemporalRequirements period: 500ms duration: 500ms

HwResources

IoPorts

Restricted address: 0xfc mask: 0xff

Range base: 0x80 noPorts: 10

PortTable

Port name: writerQ direction: source type: queuing

Port name: writerS direction: source type: sampling

Partition name: Partition2 flags: system console: Uart id: 1

PhysicalMemoryAreas

Area flags: uncacheable size: 512KB start: 0x40100000

TemporalRequirements period: 500ms duration: 500ms

PortTable

Port name: readerQ direction: destination type: queuing

Port name: readerS direction: destination type: sampling

HwResources

Interrupts lines: 4 5

IoPorts

Restricted address: 0x80000240 mask: 0xff

Range base: 0x380 noPorts: 10

Channels

QueuingChannel maxNoMessages: 10 maxMessageLength: 512B

Source portName: writerQ partitionId: 0

Destination portName: readerQ partitionId: 1

SamplingChannel maxMessageLength: 512B

Source portName: writerS partitionId: 0

Destination portName: readerS partitionId: 1

Figure 8.2: Graphical view of an example XM CF configuration file (see the XML file in section A.2).

Printed: March 1, 2011 xm-3-usermanual-022c

8.3. Hypervisor configuration file (XM CF) 87/119

<xs:enumeration value="XM_HM_EV_MEM_PROTECTION"/>

<xs:enumeration value="XM_HM_EV_OVERRUN"/>

<xs:enumeration value="XM_HM_EV_SCHED_ERROR"/>

<xs:enumeration value="XM_HM_EV_WATCHDOG_TIMER"/>

<xs:enumeration value="XM_HM_EV_INCOMPATIBLE_INTERFACE"/>

<xs:enumeration value="XM_HM_EV_WRITE_ERROR"/>

<xs:enumeration value="XM_HM_EV_INSTR_ACCESS_MMU_MISS"/>

<xs:enumeration value="XM_HM_EV_INSTR_ACCESS_ERROR"/>

<xs:enumeration value="XM_HM_EV_UNIMPLEMENTED_FLUSH"/>

<xs:enumeration value="XM_HM_EV_WATCHPOINT_DETECTED"/>

<xs:enumeration value="XM_HM_EV_DATA_ACCESS_ERROR"/>

<xs:enumeration value="XM_HM_EV_DATA_ACCESS_MMU_MISS"/>

<xs:enumeration value="XM_HM_EV_INSTR_ACCESS_EXCEPTION"/>

<xs:enumeration value="XM_HM_EV_ILLEGAL_INSTR"/>

<xs:enumeration value="XM_HM_EV_PRIVILEGED_INSTR"/>

<xs:enumeration value="XM_HM_EV_FP_DISABLED"/>

<xs:enumeration value="XM_HM_EV_CP_DISABLED"/>

<xs:enumeration value="XM_HM_EV_REGISTER_HARDWARE_ERROR"/>

<xs:enumeration value="XM_HM_EV_MEM_ADDR_NOT_ALIGNED"/>

<xs:enumeration value="XM_HM_EV_FP_EXCEPTION"/>

<xs:enumeration value="XM_HM_EV_CP_EXCEPTION"/>

<xs:enumeration value="XM_HM_EV_DATA_ACCESS_EXCEPTION"/>

<xs:enumeration value="XM_HM_EV_TAG_OVERFLOW"/>

<xs:enumeration value="XM_HM_EV_DIVIDE_EXCEPTION"/>

</xs:restriction>

</xs:simpleType>

Listing 8.2: /user/tools/xmcparser/xmc.xsd.in

./event/@action The name of the action associated with this event. Below in the list of available
actions:

<xs:simpleType name="hmAction_t">

<xs:restriction base="xs:string">

<xs:enumeration value="XM_HM_AC_IGNORE"/>

<xs:enumeration value="XM_HM_AC_SHUTDOWN"/>

<xs:enumeration value="XM_HM_AC_COLD_RESET"/>

<xs:enumeration value="XM_HM_AC_WARM_RESET"/>

<xs:enumeration value="XM_HM_AC_SUSPEND"/>

<xs:enumeration value="XM_HM_AC_HALT"/>

<xs:enumeration value="XM_HM_AC_PROPAGATE"/>

<xs:enumeration value="XM_HM_AC_SWITCH_TO_MAINTENANCE" />

</xs:restriction>

</xs:simpleType>

Listing 8.3: /user/tools/xmcparser/xmc.xsd.in

./event/@log Boolean flag to select whether the event will be logged or not. 1590

8.3.4 The /SystemDescription/HwDescription element

It contains three mandatory elements:

./HwDescription/ProcessorTable Which holds a sequence of ./Processor elements. Each pro-
cessor element describes one physical processor: the processor clock ./@frequency (the fre-
quency units has to be specified), ./@id (zero in a mono-processor system), and an optional
./@features attribute. The ./@features attribute contains a list of specific processor features 1595

than can be selected. Currently, only the memory protection workaround (“XM CPU LEON2 WA1”),
for the memory mapped processor registers bug1.

1Some key processor registers, needed to guarantee the spatial isolation, are mapped memory addresses which are not moni-
tored/protected by the write protection mechanism. The workaround consists in protecting this register area using the watchpoint
mechanism. The workaround is only applicable if the watchpoint facility is present.

xm-3-usermanual-022c Printed: March 1, 2011

88/119 Chapter 8. Configuration

Also, the ./ProcessorTable/Processor element defines the scheduling plan of this processor.
It is specified in the element ./Processor/Sched/CyclicPlan/Plan/2. The ./Plan element
has the required attributes ./@name and ./majorFrame; and contains a sequence of ./Slot1600

elements.

Each ./Slot element has the following attributes:

./Slot/@id Slot Id’s shall meet the id’s rules defined in section 2.4. This value can be retrieved
by the partition at run time, see section 5.7.1.

./Slot/@duration Time duration of the slot.1605

./Slot/@partitionId Id of the partition that will be executed during this slot.

./Slot/@start Offset with respect to the MAF start.

Slots intervals shall not overlap.

./HwDescription/MemoryLayout Defines the memory layout of the board. All the memory allocated
to partitions, resident software and XtratuM itself shall be in the range of one of these areas.1610

./HwDescription/Devices The devices element contains the sequence the XtratuM devices. Cur-
rently XtratuM implements two types of devices: UART and memory blocks.

./Uart Has the required attributes ./Uart/@name, ./Uart/@baudRate and ./Uart/@id. This
element associates the hardware device @id with the @name, and programs the transmission
speed.1615

./MemoryBlockTable This element contains a sequence of one or more ./Block elements. A
memory block device defines an area of RAM (ROM or FLASH) memory. This block of
memory can then be used to store traces, health monitoring logs or the console output of a
partition. Below is the list of attributes of the ./Block element:

./MemoryBlockTable/Block/@name Required. Name which identifies the device. This1620

name is only used to refer this device in the configuration file. Once compiled the
configuration file this name is removed.

./MemoryBlockTable/Block/@start Required. Starting address of the memory block.

./MemoryBlockTable/Block/@size Required. Size of the memory block.

8.3.5 The /SystemDescription/ResidentSw element

The element ./PhysicalMemoryAreas is used to declare the memory areas where the resident soft-1625

ware will by located. This information is included in the configuration file for completeness (all the
memory areas of the board shall be described in the configuration file) and used only to check memory
overlaps errors.

Also the attribute ./@entryPoint is used by XtratuM in the case of a cold system reset. In that case,
XtratuM will give back the control of the system to the resident softwware by jumping to this address.1630

8.3.6 The /SystemDescription/PartitionTable/Partition element

Attribute description:

./@id Required. See the section 2.4 for a description on how to identify XtratuM objects.

./@name Optional.

2The large number of nested elements is for future compatibility with multiple plans and scheduling policies.

Printed: March 1, 2011 xm-3-usermanual-022c

8.3. Hypervisor configuration file (XM CF) 89/119

./@console Optional. The console device where the output of the hypercall XM write console() is
copied to. 1635

./@flags Optional. List of features. Possible values are:

fp If set, the partition is allowed to use floating point operations. By default not set.

system If set, the partition has system privileges. By default not set.

Partition elements:

./PhysicalMemoryAreas Sequence of memory areas allocated to the partition. 1640

./HwResources Contains the list of interrupts and IO ports allocated to the partition.

./PortTable Contains the sequence of communication ports (queuing and sampling ports) of
the partition.

./Trace Configuration of the trace facility of the partition. Same attributes than that of the
/SystemDescription/XMHypervisor/Trace element. 1645

./TemporalRequirements An element which has two mandatory attributes: ./@period and
./@duration. This data is not checked by XtratuM. Reserved for future use.

Configuration of memory areas

The attributes are @start, @size and @flags. The @flags attribute is a list of the following
values:

Value Description

unmapped Allocated to the partition, but not mapped by XtratuM in the page table.
shared It is allowed to map this area in other partitions.
read-only The area is write-protected to the partition.
uncacheable Memory cache is disabled.
rom Not applicable in SPARC v8 boards. Only used in ia32 systems.

1650

Configuration of I/O ports

There are two ways to allocate a port to a partition: using ranges of ports, and using the restricted
port allocation. Both are declared by elements contained in the ./Partition/HwResources/IoPorts
element:

./Range A range of port addresses is allocated to the partition. The attributes of a range element are:

./Range/@base Required hexadecimal base address. 1655

./Range/@noPorts Required number of ports in this range. Each port is a word (4 bytes).

./Restricted An I/O port which is partially controlled by the partition. The attributes are:

./Restricted/@address Required hexadecimal address of the port.

./Restricted/@mask Optional (4 bytes hexadecimal). The bits set in this mask can be read and
written by the partition. 1660

Those bits not allocated to this partition (i.e. the bit not set in the bitmask) can be allocated
to other partitions.

xm-3-usermanual-022c Printed: March 1, 2011

90/119 Chapter 8. Configuration

Configuration of interrupts

The element ./Partition/HwResources/Interrupts has the attribute ./@lines which is a list of
the interrupt number (in the range 0 to 16) allocated to the partition.

8.3.7 The /SystemDescription/Channels element

This is an optional element with no attributes and which contains a list of channel elements. There are1665

two types of channels:

./SamplingChannel Shall contain one ./Source element and one or more ./Destination elements.
It has the following attributes:

./@maxMessageLength Required. The maximum message size that can be stored on this chan-
nel.1670

./@refreshPeriod Optional. The duration of validity of a written message. When a message is
read after this period, the validity flag will be false.

./QueuingChannel Shall contain one ./Source element and one ./Destination element. It has the
following attributes:

./@maxMessageLength Required. The maximum message size that can be stored on this chan-1675

nel.

./@maxNoMessages Required. The maximum number of messages that will be stored in the
channel.

Note: The ./QueuingChannel/@validPeriod attribute has been removed with respect to XtratuM-
2.2.x versions.1680

The arguments maxNoMsgs and maxMsgSize of the hypercalls XM create queuing port() and XM crea-

te sampling port() shall match the values of the attributes ./@maxNoMessages and ./@maxNoMessages.

The XML schema which defines the configuration file is in the appendix A.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Chapter 9

Tools

This section describes the tools to assist the integrator and the partition developers in the process of
building the final system file. 1685

xmcparser: System XML configuration parser.

xmeformat: Converts ELF files into XEF ones.

xmpack: Creates the container file.

rswbuild: Creates a bootable file image.

9.1 XML configuration parser (xmcparser)

The utility xmcparser translates the XML configuration file containing the system description into bi- 1690

nary form that can be directly used by XtratuM.

In the first place, the configuration file is checked both, syntactically, and semantically (i.e. the data
is correct). This tool uses the libxml2 library to read, parse and validate the configuration file against
the XML schema specification. Once validated by the library, the xmcparser performs a set of non-
syntactical checks: 1695

• Memory area overlapping.

• Memory region overlapping.

• Memory area inside any region.

• Duplicated Partition’s name and id.

• Allocated Cpus. 1700

• Replicated port’s names and id.

• Cyclic scheduling plan.

• Cyclic scheduling plan slot partition ids.

• Hardware irqs allocated to partitions.

• Io port alignment. 1705

• Io ports allocated to partitions.

• Allowed health monitoring actions.

91/ 119

92/119 Chapter 9. Tools

9.1.1 xmcparser

Compiles XtratuM XML configuration files

SYNOPSIS1710

xmcparser [-c] [-s xsd file] [-o output file] XM CF.xml

xmcparser -d

DESCRIPTION

xmcparser reads an XtratuM XML configuration file and transforms it into a binary file which can be
used directly by XtratuM at run time. xmcparser performs internally the folowing steps:1715

1. Parse the XML file.

2. Validate the XML data.

3. Generate a set of ”C” data structures initialised with the XML data.

4. Compiles and links, using the target compiler, the ”C” data structures. An ELF file is produced.

5. The data section which contains the data in binary format is extracted and copied to the output1720

file.

OPTIONS

-d

Prints the dafault XML schema used to validate the XML configuration file.

-o file1725

Place output in file.

-s xsd file

Use the XML schema xsd file rather than the dafault XtratuM schema.

-c

Stop after the stage of ”C” generation; do not compile. The output is in the form of a ”C” file.1730

9.2 ELF to XEF (xmeformat)

9.2.1 xmeformat

Creates and display information of XEF files

SYNOPSIS

xmeformat read [-h|-s|-m] file

xmeformat build [-m] [-o outfile] [-c] [-p payload file] file1735

Printed: March 1, 2011 xm-3-usermanual-022c

9.2. ELF to XEF (xmeformat) 93/119

DESCRIPTION

xmeformat converts an ELF, or a binary file, into an XEF format (XtratuM Executable Format). An XEF
file contains one or more segments. A segment is a block of data that shall be copied in a contiguous
area of memory (when loaded in main memory). The content of the XEF can optionally be compressed.

An XEF file has a header and a set of segments. The segments corresponds to the allocatable sec- 1740

tions of the source ELF file. In the header, there is a reserved area (16 bytes) to store user defined
information. This information is called user payload.

build

A new XEF file is created, using file as input.

-m 1745

The source file is not an ELF file but a user defined customisation. In this case, no consistency
checks are performed.
Customisation files are used to attach data to the partitions (See the xmpack command). This
data will be accessible to the partition at boot time. It is commonly used as partition defined
run-time configuration parameters. 1750

-o file
Places output in file file.

-c
The XEF segments are compressed using the LSZZ algorithm.

-p file 1755

The first 16 bytes of the file are copied into the payload area of the XEF header. The size of
the file shall be at least 16 bytes, otherwise an error is returned.

The MD5 sum value is printed if no errors.

read

Shows the contents of the XEF file. 1760

-h
Print the content of the header.

-s
Lists the segments and its attributes.

-m 1765

Lists the table of custom files. This options only works for partition and hypervisor XEF files.

USAGE EXAMPLES

Create a customisation file:

$ xmeformat build -m -o custom_file.xef data.in

b07715208bbfe72897a259619e7d7a6d custom_file.xef 1770

List the header of the XEF custom file:

xm-3-usermanual-022c Printed: March 1, 2011

94/119 Chapter 9. Tools

$ xmeformat read -h custom_file.xef

XEF header:

signature: 0x24584546

version: 1.0.01775

flags: XEF_DIGEST XEF_CONTENT_CUSTOMFILE

digest: b07715208bbfe72897a259619e7d7a6d

payload: 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

file size: 2321780

segment table offset: 80

no. segments: 1

customFile table offset: 104

no. customFiles: 0

image offset: 1041785

image length: 127

XM image’s header: 0x0

Build the hypervisor XEF file:

$ xmeformat build -o xm_core.xef -c core/xm_core

List the segments and headers of the XtratuM XEF file: $ xmeformat read -s xm core.xef Segment1790

table: 1 segments segment 0 physical address: 0x40000000 virtual address: 0x40000000 file size:
68520 compressed file size: 32923 (48.05%)

$ xmeformat read -h xm_core.xef

XEF header:

signature: 0x245845461795

version: 1.0.0

flags: XEF_DIGEST XEF_COMPRESSED XEF_CONTENT_HYPERVISOR

digest: 6698cfcf9311325e46e79ed50dfc9683

payload: 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 001800

file size: 33040

segment table offset: 80

no. segments: 1

customFile table offset: 104

no. customFiles: 11805

image offset: 112

image length: 68520

XM image’s header: 0x40010b78

compressed image length: 32928 (48.06%)

9.3 Container builder (xmpack)

9.3.1 xmpack1810

Create an XtratuM system image container

Printed: March 1, 2011 xm-3-usermanual-022c

9.3. Container builder (xmpack) 95/119

SYNOPSIS

xmpack build -h xm file[@offset]:conf file[@offset] [-p id:part file[@offset][:custom file[@offset]]*]+
container

xmpack list -c container 1815

DESCRIPTION

xmpack manipulates the XtratuM system container. The container is a simple filesystem designed to
contain the XtratuM hypervisor core and zero or more XEF files. The container is an envelope to
deploy all the system (hypervisor and partitions) from the host to the target. At boot time, the resident
software is in charge of reading the contents of the container and coping the components to the RAM 1820

areas where the hypervisor and he partitions will be executed. Note that XtratuM has no knowledge
about the container structure.

The container is organised as a list of components. Each component is a list of XEF files. A component
is used to store an executable unit, which can be: the XtratuM hypervisor or a partition. Each compo-
nent is a list of one or more files. The first file shall be a valid XtratuM image (see the XtratuM binary 1825

file header) with the configuration file (once parsed and compiled into XEF format). The rest of the
components are optional.

xmpack is a helper utility that can be used to deploy an XtratuM system. It is not mandatory to use
this tool to deploy the application (hypervisor and the partitions) in the target machine.

The following checks are done: 1830

• The binary image of the partitions fits into the allocated memory (as defined in the XM CF).

• The size of the customisation files fits into the area reserved by each partition.

• The memory allocated to XtratuM is big enough to hold the XtratuM image plus the configuration
file.

build 1835

A new container is created. Two kind of components can be defined:

-h to create an [H]ypervisor component:
The hypervisor entry is composed of the name of the XtratuM xef file and the binary config-
uration file (the result of processing the XM CF file).

-p to create a [P]artition. The partition entries are composed of: 1840

The id of the partition, as specified in the XM CF file. Note that this is the mechanism to
bind the configuration description with the actual image of the partition. The part file which
shall contains the executable image. And zero or more custom files. There shall be the
same number of customisation files than that specified in the field noCustomFiles of the
xmImageHdr structure. 1845

The elements that are part of each component are separated by ”:”.

By default, xmpack stores the files sequentially in the container. If the offset parameter is specified,
then the file is placed at the given offset. The offset is defined with respect to the start of the
container. The specified offset shall not overlap with existing data. The remaining files of the
container will be placed after the end of this file. 1850

list

Shows the contents (components and the files of each component) of a container. If the option -c
is given, the blocks allocated to each file are also shown.

xm-3-usermanual-022c Printed: March 1, 2011

96/119 Chapter 9. Tools

USAGE EXAMPLES

A new container with one hypervisor and one booting partition. The hypervisor container has two files:1855

the hypervisor binary and the configuration table:

$ xmpack build build -h ../core/xm_core.bin:xm_ct.bin -p partition1.bin -o container

The same example but the second container has now two files: the partition image and a customisa-
tion file:

$ xmpack/xmpack build -h ../core/xm_core.bin:xm_cf.bin \1860

-p partition1.bin:p1.cfg \

-p partition2.bin:p2.cfg container.bin

List the contents of the container:

$ xmpack list container.bin

<Package file="container.bin" version="1.0.0">1865

<XMHypervisor file="../core/xm_core.bin" fileSize="97188" offset="0x0" size="97192" >

<Module file="xm_cf.bin" size="8976" />

</XMHypervisor>

<Partition file="partition1.bin" fileSize="29996" offset="0x19eb8" size="30000" >

<Module file="p1.cfg" size="16" />1870

</Partition>

<Partition file="partition2.bin" fileSize="30292" offset="0x213f8" size="30296" >

<Module file="p2.cfg" size="16" />

</Partition>

</Package>1875

9.4 Bootable image creator (rswbuild)

9.4.1 rswbuild

Create a bootable image

SYNOPSIS

rswbuild contailer bootable

DESCRIPTION1880

rswbuild is a shell script that creates a bootable file by combining the resident software code with the
container file. The container shall be a valid file created with the xmpack tool.

The resident software object file is read from the distribution directory pointer by the $XTRATUM PATH

variable.

USAGE EXAMPLES1885

rswbuild container resident_sw

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Chapter 10

Security issues

This chapter introduces several security issues related with XtratuM which should be taken into account
by partition developers.

10.1 Invoking a hypercall from libXM

Invoking a hypercall requires a non-standard protocol which must be directly implemented in assembly 1890

code.

LibXM is a partition-level “C” library deployed jointly with XtratuM aiming to hide this complexity
and ease the development of “C” partitions.

From the security point of view, XtratuM implements two stacks for each partition: one managed by
the partition (user context) and another, internal, managed directly by XtratuM (supervisor context). 1895

The partition stack is used by the libXM to prepare the call to XtratuM (pretty much like the gLibc does).
Once the hypercall service is invoked, XtratuM changes the stack to its own stack. This second stack
may contain sensitive information, but it is located inside the memory space of XtratuM (not exposed).
It is normal to observe that the partition stack is modified when a hypercall is called, however this
behaviour is far from being considered an actual security issue. 1900

10.2 Preventing covert/side channels due to scheduling slot over-
run

This version of XtratuM is non-preemptible: once the kernel starts an activity (e.g. a service), it cannot
be interrupted until its completion. This behaviour includes any hypercall invocation: if a partition
calls an hypercall just before a partition context switch must be performed, XtratuM will not carry 1905

out the action until the hypercall is finished. This overrun can be exploited to gain information. The
information is obtained by measuring the temporal cost of the last hypercall. There are two types of
information that can be retrieved:

1. Whether the target partition was executing an hypercall at the end of the slot or not. If the spy
partition start at the nominal slot start time or not. 1910

2. In the case of being executing a hypercall, how much time XtratuM needed to attend it: the cost
of the last hypercall.

97/ 119

98/119 Chapter 10. Security issues

In the case of a covert channel, the maximum bandwidth is determined by the duration of the longest
hypercall divided by the clock resolution. A rough estimation (supposing that the maximum message
length is 4096 Bytes) is 4 bits at each partition context switch.1915

In the case of a side channel, the bandwidth is drastically reduced due to the uncertainty/randomness
introduced by the execution of the target partition.

There are several strategies to address this issue:

1. At integrator level: design a scheduling plan that lest some idle time before the end of a slot and
the beginning of the next one. The Xoncrete scheduling tool is able to implement that solution1920

automatically. Figure 10.1 shows two scenarios: scenario 1 where the integrator has not left spare
time between one partition slot and the next one, enabling the partition in light grey overrunning
the start of the dark gray one. Scenario 2 sketches the same case but leaving spare time between
one slot and the next one. So, in this case, execution overruns can not occur.

2. At partition level: stop invoking hypercalls some time before the end of the slot. This way, there1925

will be no hypercalls being executed when the slot end occurs, so the next partition will start
always with no delay.

3. At hypervisor level:

(a) Change the design of XtratuM to convert it preemptable. Hypercalls would be interrupted
when the end of the slot is reached, and later resumed when the partition is active again.1930

(b) Implement the partial preemptability in XtratuM (voluntary preemption). XtratuM is by
default atomic (non-preemptable) but at some designated safe places in the code, the pre-
emption is allowed.

Figure 10.1: Covert channel caused by an incorrect scheduling plan and a solution.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Appendix A

XML Schema Definition

A.1 XML Schema file

basicstyle

1 <?xml version="1.0"?>

2 <xs:schema targetNamespace="http://www.xtratum.org/xm-3.x"

3 xmlns:xs="http://www.w3.org/2001/XMLSchema"

4 xmlns="http://www.xtratum.org/xm-3.x"

5 elementFormDefault="qualified"

6 attributeFormDefault="unqualified">

7
8 <!-- Basic types definition -->

9 <xs:simpleType name="id_t">

10 <xs:restriction base="xs:integer">

11 <xs:minInclusive value="0"/>

12 </xs:restriction>

13 </xs:simpleType>

14
15 <xs:simpleType name="idString_t">

16 <xs:restriction base="xs:string">

17 <xs:minLength value="1"/>

18 </xs:restriction>

19 </xs:simpleType>

20
21 <xs:simpleType name="hwIrqId_t">

22 <xs:restriction base="xs:integer">

23 <xs:minInclusive value="0"/>

24 <xs:maxExclusive value="16"/>

25 </xs:restriction>

26 </xs:simpleType>

27
28 <xs:simpleType name="hwIrqIdList_t">

29 <xs:list itemType="hwIrqId_t"/>

30 </xs:simpleType>

31
32 <xs:simpleType name="hex_t">

33 <xs:restriction base="xs:string">

34 <xs:pattern value="0x[0-9a-fA-F]+"/>

99/ 119

100/119 Appendix A. XML Schema Definition

35 </xs:restriction>

36 </xs:simpleType>

37 <xs:simpleType name="version_t">

38 <xs:restriction base="xs:string">

39 <xs:pattern value="[0-9]+.[0-9]+.[0-9]+"/>

40 </xs:restriction>

41 </xs:simpleType>

42
43 <xs:simpleType name="freqUnit_t">

44 <xs:restriction base="xs:string">

45 <xs:pattern value="[0-9]+(.[0-9]+)?([MK][Hh]z)"/>

46 </xs:restriction>

47 </xs:simpleType>

48
49 <xs:simpleType name="processorFeatures_t">

50 <xs:restriction base="xs:string">

51 <xs:enumeration value="XM_CPU_LEON2_WA1"/>

52 </xs:restriction>

53 </xs:simpleType>

54
55 <xs:simpleType name="processorFeaturesList_t">

56 <xs:list itemType="processorFeatures_t"/>

57 </xs:simpleType>

58
59 <xs:simpleType name="partitionFlags_t">

60 <xs:restriction base="xs:string">

61 <xs:enumeration value="system"/>

62 <xs:enumeration value="fp"/>

63 </xs:restriction>

64 </xs:simpleType>

65
66 <xs:simpleType name="partitionFlagsList_t">

67 <xs:list itemType="partitionFlags_t"/>

68 </xs:simpleType>

69
70 <xs:simpleType name="sizeUnit_t">

71 <xs:restriction base="xs:string">

72 <xs:pattern value="[0-9]+(.[0-9]+)?([MK]?B)"/>

73 </xs:restriction>

74 </xs:simpleType>

75
76 <xs:simpleType name="timeUnit_t">

77 <xs:restriction base="xs:string">

78 <xs:pattern value="[0-9]+(.[0-9]+)?([mu]?[sS])"/>

79 </xs:restriction>

80 </xs:simpleType>

81
82 <xs:simpleType name="hmString_t">

83 <xs:restriction base="xs:string">

84 <xs:enumeration value="XM_HM_EV_INTERNAL_ERROR"/>

85 <xs:enumeration value="XM_HM_EV_UNEXPECTED_TRAP"/>

86 <xs:enumeration value="XM_HM_EV_PARTITION_ERROR"/>

87 <xs:enumeration value="XM_HM_EV_PARTITION_INTEGRITY"/>

88 <xs:enumeration value="XM_HM_EV_MEM_PROTECTION"/>

Printed: March 1, 2011 xm-3-usermanual-022c

A.1. XML Schema file 101/119

89 <xs:enumeration value="XM_HM_EV_OVERRUN"/>

90 <xs:enumeration value="XM_HM_EV_SCHED_ERROR"/>

91 <xs:enumeration value="XM_HM_EV_WATCHDOG_TIMER"/>

92 <xs:enumeration value="XM_HM_EV_INCOMPATIBLE_INTERFACE"/>

93 <xs:enumeration value="XM_HM_EV_WRITE_ERROR"/>

94 <xs:enumeration value="XM_HM_EV_INSTR_ACCESS_MMU_MISS"/>

95 <xs:enumeration value="XM_HM_EV_INSTR_ACCESS_ERROR"/>

96 <xs:enumeration value="XM_HM_EV_UNIMPLEMENTED_FLUSH"/>

97 <xs:enumeration value="XM_HM_EV_WATCHPOINT_DETECTED"/>

98 <xs:enumeration value="XM_HM_EV_DATA_ACCESS_ERROR"/>

99 <xs:enumeration value="XM_HM_EV_DATA_ACCESS_MMU_MISS"/>

100 <xs:enumeration value="XM_HM_EV_INSTR_ACCESS_EXCEPTION"/>

101 <xs:enumeration value="XM_HM_EV_ILLEGAL_INSTR"/>

102 <xs:enumeration value="XM_HM_EV_PRIVILEGED_INSTR"/>

103 <xs:enumeration value="XM_HM_EV_FP_DISABLED"/>

104 <xs:enumeration value="XM_HM_EV_CP_DISABLED"/>

105 <xs:enumeration value="XM_HM_EV_REGISTER_HARDWARE_ERROR"/>

106 <xs:enumeration value="XM_HM_EV_MEM_ADDR_NOT_ALIGNED"/>

107 <xs:enumeration value="XM_HM_EV_FP_EXCEPTION"/>

108 <xs:enumeration value="XM_HM_EV_CP_EXCEPTION"/>

109 <xs:enumeration value="XM_HM_EV_DATA_ACCESS_EXCEPTION"/>

110 <xs:enumeration value="XM_HM_EV_TAG_OVERFLOW"/>

111 <xs:enumeration value="XM_HM_EV_DIVIDE_EXCEPTION"/>

112 </xs:restriction>

113 </xs:simpleType>

114
115
116 <xs:simpleType name="hmAction_t">

117 <xs:restriction base="xs:string">

118 <xs:enumeration value="XM_HM_AC_IGNORE"/>

119 <xs:enumeration value="XM_HM_AC_SHUTDOWN"/>

120 <xs:enumeration value="XM_HM_AC_COLD_RESET"/>

121 <xs:enumeration value="XM_HM_AC_WARM_RESET"/>

122 <xs:enumeration value="XM_HM_AC_SUSPEND"/>

123 <xs:enumeration value="XM_HM_AC_HALT"/>

124 <xs:enumeration value="XM_HM_AC_PROPAGATE"/>

125 <xs:enumeration value="XM_HM_AC_SWITCH_TO_MAINTENANCE" />

126 </xs:restriction>

127 </xs:simpleType>

128
129 <xs:simpleType name="memAreaFlags_t">

130 <xs:restriction base="xs:string">

131 <xs:enumeration value="unmapped"/>

132 <xs:enumeration value="shared"/>

133 <xs:enumeration value="read-only"/>

134 <xs:enumeration value="uncacheable"/>

135 <xs:enumeration value="rom"/>

136 <xs:enumeration value="shlib"/>

137 <xs:enumeration value="flag0"/>

138 <xs:enumeration value="flag1"/>

139 <xs:enumeration value="flag2"/>

140 <xs:enumeration value="flag3"/>

141 </xs:restriction>

142 </xs:simpleType>

xm-3-usermanual-022c Printed: March 1, 2011

102/119 Appendix A. XML Schema Definition

143
144 <xs:simpleType name="memAreaFlagsList_t">

145 <xs:list itemType="memAreaFlags_t"/>

146 </xs:simpleType>

147
148 <xs:simpleType name="memRegion_t">

149 <xs:restriction base="xs:string">

150 <xs:enumeration value="sdram"/>

151 <xs:enumeration value="stram"/>

152 </xs:restriction>

153 </xs:simpleType>

154
155 <xs:simpleType name="portType_t">

156 <xs:restriction base="xs:string">

157 <xs:enumeration value="queuing"/>

158 <xs:enumeration value="sampling"/>

159 </xs:restriction>

160 </xs:simpleType>

161
162 <xs:simpleType name="direction_t">

163 <xs:restriction base="xs:string">

164 <xs:enumeration value="source"/>

165 <xs:enumeration value="destination"/>

166 </xs:restriction>

167 </xs:simpleType>

168
169 <xs:simpleType name="yntf_t">

170 <xs:restriction base="xs:string">

171 <xs:enumeration value="yes"/>

172 <xs:enumeration value="no"/>

173 <xs:enumeration value="true"/>

174 <xs:enumeration value="false"/>

175 </xs:restriction>

176 </xs:simpleType>

177 <!-- End Types -->

178
179 <!-- Elements -->

180 <!-- Hypervisor -->

181 <xs:complexType name="hypervisor_e">

182 <xs:all>

183 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

184 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0" />

185 <xs:element name="Trace" type="trace_e" minOccurs="0" />

186 </xs:all>

187 <xs:attribute name="console" type="idString_t" use="optional"/>

188 <xs:attribute name="healthMonitorDevice" type="idString_t" use="optional"/>

189 </xs:complexType>

190
191 <!-- Rsw -->

192 <xs:complexType name="rsw_e">

193 <xs:all>

194 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

195 </xs:all>

196 </xs:complexType>

Printed: March 1, 2011 xm-3-usermanual-022c

A.1. XML Schema file 103/119

197
198 <!-- Partition -->

199 <xs:complexType name="partition_e">

200 <xs:all>

201 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

202 <xs:element name="TemporalRequirements" minOccurs="0">

203 <xs:complexType>

204 <xs:attribute name="period" type="timeUnit_t" use="required"/>

205 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

206 </xs:complexType>

207 </xs:element>

208 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0" />

209 <xs:element name="HwResources" type="hwResources_e" minOccurs="0" />

210 <xs:element name="PortTable" type="partitionPorts_e" minOccurs="0" />

211 <xs:element name="Trace" type="trace_e" minOccurs="0" />

212 </xs:all>

213 <xs:attribute name="id" type="id_t" use="required"/>

214 <xs:attribute name="name" type="idString_t" use="optional"/>

215 <xs:attribute name="console" type="idString_t" use="optional"/>

216 <xs:attribute name="flags" type="partitionFlagsList_t" use="optional" />

217 </xs:complexType>

218
219 <!-- Trace -->

220 <xs:complexType name="trace_e">

221 <xs:attribute name="device" type="idString_t" use="required"/>

222 <xs:attribute name="bitmask" type="hex_t" use="required"/>

223 </xs:complexType>

224
225 <!-- Communication Ports -->

226 <xs:complexType name="partitionPorts_e">

227 <xs:sequence minOccurs="0" maxOccurs="unbounded">

228 <xs:element name="Port">

229 <xs:complexType>

230 <xs:attribute name="name" type="idString_t" use="required"/>

231 <xs:attribute name="direction" type="direction_t" use="required"/>

232 <xs:attribute name="type" type="portType_t" use="required"/>

233 </xs:complexType>

234 </xs:element>

235 </xs:sequence>

236 </xs:complexType>

237
238 <!-- Channels -->

239 <xs:complexType name="channels_e">

240 <xs:sequence minOccurs="0" maxOccurs="unbounded">

241 <xs:choice>

242 <xs:element name="SamplingChannel">

243 <xs:complexType>

244 <xs:sequence minOccurs="1">

245 <xs:element name="Source" type="ipcPort_e" />

246 <xs:sequence minOccurs="1" maxOccurs="unbounded">

247 <xs:element name="Destination" type="ipcPort_e"/>

248 </xs:sequence>

249 </xs:sequence>

xm-3-usermanual-022c Printed: March 1, 2011

104/119 Appendix A. XML Schema Definition

250 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="

required"/>

251 <xs:attribute name="refreshPeriod" type="timeUnit_t" use="optional"/

>

252 </xs:complexType>

253 </xs:element>

254 <xs:element name="QueuingChannel">

255 <xs:complexType>

256 <xs:all minOccurs="1">

257 <xs:element name="Source" type="ipcPort_e" />

258 <xs:element name="Destination" type="ipcPort_e"/>

259 </xs:all>

260 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="

required"/>

261 <xs:attribute name="maxNoMessages" type="xs:positiveInteger" use="

required"/>

262 </xs:complexType>

263 </xs:element>

264 </xs:choice>

265 </xs:sequence>

266 </xs:complexType>

267
268 <!-- Devices -->

269 <xs:complexType name="devices_e">

270 <xs:sequence minOccurs="0" maxOccurs="unbounded">

271 <xs:choice>

272
273 <xs:element name="MemoryBlock" minOccurs="0">

274 <xs:complexType>

275 <xs:attribute name="name" type="idString_t" use="required"/>

276 <xs:attribute name="start" type="hex_t" use="required"/>

277 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

278 </xs:complexType>

279 </xs:element>

280
281
282 <xs:element name="Uart" minOccurs="0">

283 <xs:complexType>

284 <xs:attribute name="name" type="idString_t" use="required"/>

285 <xs:attribute name="id" type="idString_t" use="required"/>

286 <xs:attribute name="baudRate" type="xs:positiveInteger" use="

required"/>

287 <xs:attribute name="rxBufferLen" type="xs:positiveInteger" use="

optional" />

288 </xs:complexType>

289 </xs:element>

290
291 </xs:choice>

292 </xs:sequence>

293 </xs:complexType>

294
295 <!-- IPC Port -->

296 <xs:complexType name="ipcPort_e">

297 <xs:attribute name="partitionId" type="id_t" use="required"/>

Printed: March 1, 2011 xm-3-usermanual-022c

A.1. XML Schema file 105/119

298 <xs:attribute name="partitionName" type="idString_t" use="optional"/>

299 <xs:attribute name="portName" type="idString_t" use="required"/>

300 </xs:complexType>

301
302 <!-- Hw Description -->

303 <xs:complexType name="hwDescription_e">

304 <xs:all>

305 <xs:element name="ProcessorTable">

306 <xs:complexType>

307 <xs:sequence minOccurs="1" maxOccurs="256">

308 <xs:element name="Processor" type="processor_e" />

309 </xs:sequence>

310 </xs:complexType>

311 </xs:element>

312 <xs:element name="MemoryLayout" type="memoryLayout_e"/>

313 <xs:element name="Devices" type="devices_e"/>

314 </xs:all>

315 </xs:complexType>

316
317 <!-- Processor -->

318 <xs:complexType name="processor_e">

319 <xs:all>

320 <xs:element name="CyclicPlanTable" type="cyclicPlan_e"/>

321 </xs:all>

322 <xs:attribute name="id" type="id_t" use="required"/>

323 <xs:attribute name="frequency" type="freqUnit_t" use="optional"/>

324 <xs:attribute name="features" type="processorFeaturesList_t" use="optional"

/>

325 </xs:complexType>

326
327 <!-- HwResource -->

328 <xs:complexType name="hwResources_e">

329 <xs:all>

330 <xs:element name="IoPorts" type="ioPorts_e" minOccurs="0" />

331 <xs:element name="Interrupts" minOccurs="0">

332 <xs:complexType>

333 <xs:attribute name="lines" type="hwIrqIdList_t" use="required"/>

334 </xs:complexType>

335 </xs:element>

336 </xs:all>

337 </xs:complexType>

338
339 <!-- Io Ports -->

340 <xs:complexType name="ioPorts_e">

341 <xs:sequence minOccurs="0" maxOccurs="unbounded">

342 <xs:choice>

343 <xs:element name="Range">

344 <xs:complexType>

345 <xs:attribute name="base" type="hex_t" use="required"/>

346 <xs:attribute name="noPorts" type="xs:positiveInteger" use="required

"/>

347 </xs:complexType>

348 </xs:element>

349 <xs:element name="Restricted">

xm-3-usermanual-022c Printed: March 1, 2011

106/119 Appendix A. XML Schema Definition

350 <xs:complexType>

351 <xs:attribute name="address" type="hex_t" use="required"/>

352 <xs:attribute name="mask" type="hex_t" use="optional"/>

353 </xs:complexType>

354 </xs:element>

355 </xs:choice>

356 </xs:sequence>

357 </xs:complexType>

358
359 <!-- CyclicPlan -->

360 <xs:complexType name="cyclicPlan_e">

361 <xs:sequence minOccurs="1" maxOccurs="unbounded">

362 <xs:element name="Plan" type="plan_e" />

363 </xs:sequence>

364 </xs:complexType>

365
366 <!-- Plan -->

367 <xs:complexType name="plan_e">

368 <xs:sequence minOccurs="1" maxOccurs="unbounded">

369 <xs:element name="Slot">

370 <xs:complexType>

371 <xs:attribute name="id" type="id_t" use="required"/>

372 <xs:attribute name="start" type="timeUnit_t" use="required"/>

373 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

374 <xs:attribute name="partitionId" type="id_t" use="required"/>

375 </xs:complexType>

376 </xs:element>

377 </xs:sequence>

378 <xs:attribute name="id" type="id_t" use="required"/>

379 <xs:attribute name="majorFrame" type="timeUnit_t" use="required"/>

380 </xs:complexType>

381
382 <!-- Health Monitor -->

383 <xs:complexType name="healthMonitor_e">

384 <xs:sequence minOccurs="1" maxOccurs="unbounded">

385 <xs:element name="Event">

386 <xs:complexType>

387 <xs:attribute name="name" type="hmString_t" use="required"/>

388 <xs:attribute name="action" type="hmAction_t" use="required"/>

389 <xs:attribute name="log" type="yntf_t" use="required"/>

390 </xs:complexType>

391 </xs:element>

392 </xs:sequence>

393 </xs:complexType>

394
395 <!-- Memory Layout -->

396 <xs:complexType name="memoryLayout_e">

397 <xs:sequence minOccurs="1" maxOccurs="unbounded">

398 <xs:element name="Region">

399 <xs:complexType>

400 <xs:attribute name="type" type="memRegion_t" use="required"/>

401 <xs:attribute name="start" type="hex_t" use="required"/>

402 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

403 </xs:complexType>

Printed: March 1, 2011 xm-3-usermanual-022c

A.2. Configuration file example 107/119

404 </xs:element>

405 </xs:sequence>

406 </xs:complexType>

407
408 <!-- Memory Area -->

409 <xs:complexType name="memoryArea_e">

410 <xs:sequence minOccurs="1" maxOccurs="unbounded">

411 <xs:element name="Area">

412 <xs:complexType>

413 <xs:attribute name="start" type="hex_t" use="required"/>

414 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

415 <xs:attribute name="flags" type="memAreaFlagsList_t" use="optional"/>

416 <xs:attribute name="mappedAt" type="hex_t" use="optional" />

417 </xs:complexType>

418 </xs:element>

419 </xs:sequence>

420 </xs:complexType>

421
422 <!-- Root Element -->

423 <xs:element name="SystemDescription">

424 <xs:complexType>

425 <xs:all>

426 <xs:element name="HwDescription" type="hwDescription_e" />

427 <xs:element name="XMHypervisor" type="hypervisor_e"/>

428 <xs:element name="ResidentSw" type="rsw_e" minOccurs="0"/>

429 <xs:element name="PartitionTable">

430 <xs:complexType>

431 <xs:sequence maxOccurs="unbounded">

432 <xs:element name="Partition" type="partition_e" />

433 </xs:sequence>

434 </xs:complexType>

435 </xs:element>

436 <xs:element name="Channels" type="channels_e" minOccurs="0" />

437 </xs:all>

438 <xs:attribute name="version" type="version_t" use="required"/>

439 <xs:attribute name="name" type="idString_t" use="required"/>

440 </xs:complexType>

441 </xs:element>

442 <!-- End Root Element -->

443 <!-- Elements -->

444 </xs:schema>

Listing A.1: xmc.xsd

A.2 Configuration file example

<SystemDescription xmlns="http://www.xtratum.org/xm-3.x"

version="1.0.0" name="hello_world">

<HwDescription>

<ProcessorTable>

<Processor id="0" frequency="50Mhz">

<Sched>

<CyclicPlan>

xm-3-usermanual-022c Printed: March 1, 2011

108/119 Appendix A. XML Schema Definition

<Plan majorFrame="2ms">

<Slot id="0" start="0ms" duration="1ms" partitionId="0"/>

<Slot id="1" start="1ms" duration="1ms" partitionId="1"/>

</Plan>

</CyclicPlan>

</Sched>

</Processor>

</ProcessorTable>

<Devices>

<Uart id="0" baudRate="115200" name="Uart" />

<MemoryBlock name="MemDisk0" start="0x40100000" size="256KB" />

<MemoryBlock name="MemDisk1" start="0x40150000" size="256KB" />

<MemoryBlock name="MemDisk2" start="0x40200000" size="256KB" />

</Devices>

<MemoryLayout>

<Region type="stram" start="0x40000000" size="4MB"/>

</MemoryLayout>

</HwDescription>

<XMHypervisor console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40000000" size="512KB" flags="uncacheable"/>

</PhysicalMemoryAreas>

<HealthMonitor>

<Event name="XM_HM_EV_INTERNAL_ERROR" action="XM_HM_AC_IGNORE" log="yes"/>

</HealthMonitor>

<Trace device="MemDisk0" bitmask="0xabcd" />

</XMHypervisor>

<ResidentSw>

<PhysicalMemoryAreas>

<Area start="0x40200000" size="1MB" flags="shared"/>

</PhysicalMemoryAreas>

</ResidentSw>

<PartitionTable>

<Partition id="0" name="Partition1" flags="system" console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40080000" size="512KB" />

<Area start="0x40200000" size="1MB" flags="shared"/>

</PhysicalMemoryAreas>

<TemporalRequirements duration="500ms" period="500ms"/>

<HwResources>

<IoPorts>

<Restricted address="0xfc" mask="0xff"/>

<Range base="0x80" noPorts="10"/>

</IoPorts>

</HwResources>

<PortTable>

<Port name="writerQ" type="queuing" direction="source" />

<Port name="writerS" type="sampling" direction="source" />

</PortTable>

</Partition>

<Partition id="1" name="Partition2" flags="system" console="Uart">

<PhysicalMemoryAreas>

<Area start="0x40100000" size="512KB" flags="uncacheable" />

Printed: March 1, 2011 xm-3-usermanual-022c

A.2. Configuration file example 109/119

</PhysicalMemoryAreas>

<TemporalRequirements duration="500ms" period="500ms"/>

<PortTable>

<Port name="readerQ" type="queuing" direction="destination" />

<Port name="readerS" type="sampling" direction="destination" />

</PortTable>

<HwResources>

<Interrupts lines="4 5" />

<IoPorts>

<Restricted address="0x80000240" mask="0xff"/>

<Range base="0x380" noPorts="10"/>

</IoPorts>

</HwResources>

</Partition>

</PartitionTable>

<Channels>

<QueuingChannel maxMessageLength="512B" maxNoMessages="10">

<Source partitionId="0" portName="writerQ" />

<Destination partitionId="1" portName="readerQ" />

</QueuingChannel>

<SamplingChannel maxMessageLength="512B">

<Source partitionId="0" portName="writerS" />

<Destination partitionId="1" portName="readerS" />

</SamplingChannel>

</Channels>

</SystemDescription>

Listing A.2: /user/tools/xmcparser/xm cf.sparcv8.xml

xm-3-usermanual-022c Printed: March 1, 2011

This page is intentionally left blank.

Volume 2: User Manual

GNU Free Documentation License 1935

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed. 1940

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible 1945

for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software 1950

needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS 1955

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in 1960

a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall 1965

subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain

111/ 119

112/119 Appendix A. GNU Free Documentation License

any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of1970

Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover1975

Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for1980

drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.1985

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo in-
put format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools1990

are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent1995

appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Docu-2000

ment means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.2005

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying2010

of the copies you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Printed: March 1, 2011 xm-3-usermanual-022c

113/119

3. COPYING IN QUANTITY 2015

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words of the title 2020

equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. 2025

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you 2030

begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the 2035

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the 2040

Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of 2045

that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement. 2050

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright no-
tices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to 2055

use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

xm-3-usermanual-022c Printed: March 1, 2011

114/119 Appendix A. GNU Free Documentation License

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.2060

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.2065

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.2070

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.2075

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.2080

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of2085

your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)2090

any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their2095

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections2100

of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

Printed: March 1, 2011 xm-3-usermanual-022c

115/119

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique 2105

number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”. 2110

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects. 2115

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or 2120

works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the Docu-
ment. 2125

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate. 2130

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this 2135

License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require- 2140

ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

xm-3-usermanual-022c Printed: March 1, 2011

116/119 Appendix A. GNU Free Documentation License

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received2145

copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may2150

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a2155

version number of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:2160

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.2165

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the2170

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these ex-
amples in parallel under your choice of free software license, such as the GNU General Public License,2175

to permit their use in free software.

Printed: March 1, 2011 xm-3-usermanual-022c

Volume 2: User Manual

Glossary of Terms and Acronyms

Glossary

covert channel Covert channel is a type of computer security flaw that allows to transfer information
objects between processes that are not supposed to be allowed to communicate by the computer 2180

security policy.

customisation file A user defied file which is loaded in the memory space of XtratuM or the partitions.
It is used to pass runtime configuration data to the partitions. For example the configuration
vector to XtratuM; or runtime parameters to a partition.

error An error is the part of the system state that may cause a subsequent failure: a failure occurs 2185

when an error reaches the service interface and alters the service.

failure A failure is an event that occurs when the delivered service deviates from correct service.

fault A fault is the adjudged or hypothesized cause of an error.

hypercall The service (system call) provided by the hypervisor. The services provided are known as
para-virtual services. 2190

hypervisor The layer of software that, using the native hardware resources, provides one or more
virtual machines (partitions).

i/o port Or peripheral port, is a low level processor address connected to an external peripheral. Some
processors map the I/O ports in a designated memory addresses, and is accessed as if it were RAM
memory; while others use a special I/O space which requires special processor intructions. 2195

native hardware The existing hardware: processor, interrupt, clock, etc.

para-virtual A virtual object that resembles, but with a different interface, the native object.

partition Also known as “virtual machine” or “domain”. It refers to the environment created by the
hypervisor to execute user code.

partition code Also known as “guest”. Is the code executed inside a partition. Usually, the code is 2200

composed of an operating system and a set of processes or threads. Since application code relies
on the services provided by the OS, we will assume that the partition code is an operating system
(or a real-time operating system).

resident software The booting sofware that is executed directly in ROM memory right after a system
reboot, also refered as boot-loader or firmware. Among other tasks, it is in charge of loading in 2205

RAM memory XtratuM and the initial partitions.

side channel A side-channel is any observable information emitted as a byproduct of the physical
implementation or operation of the system.

117/ 119

118/119 Appendix A. Glossary of Terms and Acronyms

spare time Processor time reserved for future utilisation. Note that idle time is the remaining processor
capacity after the current workload has been fully attended.2210

system partition A partition that has extra capabilities to manage and control the system, and other
partitions. Originally these partitions were named “supervisor partitions” but to avoid confusion
with the processor modes it was renamed as “system partitions”.

Abbreviated terms

Term Description
ABI Application Binary Interface.
APEX APplication EXecutive.
API Application Programming Interface.
ARINC Aeronautical Radio, INC. http://www.arinc.com/
BIOS Basic Input Output Software.
bps Bits Per Second.
CC Common Criteria for Information Technology Security Evaluation.
DMA Direct Memory Access.
ELF Executable and Linkable Format.
ESD Effective Slot Duration.
FIFO First In First Out.
GPOS General Purpose Operating System.
HM Health Monitor.
IMA Integrated Modular Avionics.
IPC Inter Partition Communication.
MAF Major Frame. See cyclic scheduling.
MMU Memory Management Unit.
PCT Partition Control Table.
PIT Partition Information Table.
RSW Resident SoftWare.
RTEMS Real-Time Executive for Multiprocessor Systems.
SD Slot Duration.
ST Security Target.
TBR Trap Base Register. A special LEON2 register.
TSC TSF Scope of Control.
TSO Total Storage Ordering.
UART Universal Asynchronous Receiver Transmitter. A serial port.
VMM Virtual Machine Monitor (hypervisor).
WCET Worst Case Execution Time.
WIM Window Invalid Mask. A special LEON2 register.
XAL XtratuM Abstraction Layer.
XEF XtratuM Executable Format.
XM CF XML XtratuM configuration file. It can also be named as XM CF.xml to remind that

it is an XML file.
XM CT.bin The compiled binary version of the XM CF configuration file.
XML eXtended Markup Languaje.

Printed: March 1, 2011 xm-3-usermanual-022c

http://www.arinc.com/

Volume 2: User Manual

Index

bare-application, 392215

boot, 3, 6–8, 48, 75, 76

channel, 13, 27, 47, 77, 85
communication port, 8, 13, 18, 22, 27, 89
component, 28, 71, 76
configuration file, 8, 10, 13, 18, 22, 47, 49, 56,2220

63, 83, 91
container, 25, 71–73, 75, 76
context switch, 11, 12, 53
customisation, 23

extended2225

virtual, 14

health monitor, 6, 14, 27, 49, 51, 85
hypercall, 39

I/O server, 18
initialise, 392230

integrator, 23
interrupt, 8, 18

hardware, 7, 19
native, 22
timer, 112235

virtual, 22

major time frame, 9
menuconfig, 26, 79
message, 13
mode change, 122240

para-virtual, 39
partition

normal, 8
standard, 22
system, 6, 8, 13, 21, 222245

PCT, 14, 67
plan

initial, 12
maintenance, 12

port2250

I/O, 27
queuing, 13, 18, 22, 47
sampling, 13, 18, 22, 47

reset, 12, 46

cold, 7 2255

hardware, 7
warm, 7

resident software, 6, 23, 25, 75, 85
rswbuild, 96

DESCRIPTION, 96 2260

SYNOPSIS, 96
USAGE EXAMPLES, 96

scheduling, 3, 6, 8–11, 22, 27, 77
cyclic, 3, 9, 10, 22

state 2265

partition, 7
system, 6

time slot, 8
time slot, 9
trap table, 18, 19 2270

vitual, 19, 49

xmcparser, 92
DESCRIPTION, 92
OPTIONS, 92
SYNOPSIS, 92 2275

xmeformat, 92
DESCRIPTION, 93
SYNOPSIS, 92
USAGE EXAMPLES, 93

xmpack, 94 2280

DESCRIPTION, 95
SYNOPSIS, 95
USAGE EXAMPLES, 96

119/ 119

	Preface
	1 Introduction
	1.1 History

	2 XtratuM Architecture
	2.1 System operation
	2.2 Partition operation
	2.3 System partitions
	2.4 Names and identifiers
	2.5 Partition scheduling
	2.5.1 Multiple scheduling plans

	2.6 Inter-partition communications (IPC)
	2.7 Health monitor (HM)
	2.7.1 HM Events
	2.7.2 HM Actions
	2.7.3 HM Configuration
	2.7.4 HM notification

	2.8 Access to devices
	2.9 Traps, interrupts and exceptions
	2.9.1 Traps
	2.9.2 Interrupts

	2.10 Traces
	2.11 Clocks and timers
	2.12 Status
	2.13 Summary

	3 Developing Process Overview
	3.1 Development at a glance
	3.2 Building XtratuM
	3.3 System configuration
	3.4 Compiling partition code
	3.5 Passing parameters to the partitions: customisation files
	3.6 Building the final system image

	4 Building XtratuM
	4.1 Developing environment
	4.2 Compile XtratuM Hypervisor
	4.3 Generating binary a distribution
	4.4 Installing a binary distribution
	4.5 Compile the Hello World! partition
	4.6 XtratuM directory tree

	5 Partition Programming
	5.1 Implementation requirements
	5.2 XAL development environment
	5.3 Partition definition
	5.4 The ``Hello World'' example
	5.4.1 Included headers

	5.5 Partition reset
	5.6 System reset
	5.7 Scheduling
	5.7.1 Slot identification
	5.7.2 Managing scheduling plans

	5.8 Console output
	5.9 Inter-partition communication
	5.9.1 Message notification

	5.10 Peripheral programming
	5.11 Traps, interrupts and exceptions
	5.11.1 Traps
	5.11.2 Interrupts
	5.11.3 Exceptions

	5.12 Clock and timer services
	5.12.1 Execution time clock

	5.13 Processor management
	5.13.1 Managing stack context

	5.14 Tracing
	5.14.1 Trace messages
	5.14.2 Reading traces
	5.14.3 Configuration

	5.15 System and partition status
	5.16 Memory management
	5.17 Releasing the processor
	5.18 Partition customisation files
	5.19 Assembly programming
	5.19.1 The object interface

	5.20 Manpages summary

	6 Binary Interfaces
	6.1 Data representation
	6.2 Hypercall mechanism
	6.3 Executable formats overview
	6.4 Partition ELF format
	6.4.1 Partition image header
	6.4.2 Partition control table (PCT)

	6.5 XEF format
	6.5.1 Compression algorithm

	6.6 Container format

	7 Booting
	7.1 Boot configuration

	8 Configuration
	8.1 XtratuM source code configuration (menuconfig)
	8.2 Resident software source code configuration (menuconfig)
	8.2.1 Memory requirements

	8.3 Hypervisor configuration file (XM_CF)
	8.3.1 Data representation and XPath syntax
	8.3.2 The root element: /SystemDescription
	8.3.3 The /SystemDescription/XMHypervisor element
	8.3.4 The /SystemDescription/HwDescription element
	8.3.5 The /SystemDescription/ResidentSw element
	8.3.6 The /SystemDescription/PartitionTable/Partition element
	8.3.7 The /SystemDescription/Channels element

	9 Tools
	9.1 XML configuration parser (xmcparser)
	9.1.1 xmcparser

	9.2 ELF to XEF (xmeformat)
	9.2.1 xmeformat

	9.3 Container builder (xmpack)
	9.3.1 xmpack

	9.4 Bootable image creator (rswbuild)
	9.4.1 rswbuild

	10 Security issues
	10.1 Invoking a hypercall from libXM
	10.2 Preventing covert/side channels due to scheduling slot overrun

	A XML Schema Definition
	A.1 XML Schema file
	A.2 Configuration file example

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

	Glossary of Terms and Acronyms
	Index

