
An Admissibility-Based Operational Transformation
Framework for Collaborative Editing Systems

Du Li1 & Rui Li2
1Nokia Research Center, 955 PageMill Road, Palo Alto, CA 94304, USA (E-mail: lidu008@gmail.com);
2Google, Inc., Building 43 - 171B, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
(E-mail: ruili73@hotmail.com)

Abstract. Operational transformation (OT) as a consistency control method has been well
accepted in group editors. With OT, the users can edit any part of a shared document at any time
and local responsiveness is not sensitive to communication latencies. However, established
theoretical frameworks for developing OT algorithms either require transformation functions to
work in all possible cases, which complicates the design of transformation functions, or include an
under-formalized condition of intention preservation, which results in algorithms that cannot be
formally proved and must be fixed over time to address newly discovered counterexamples. To
address those limitations, this paper proposes an alternative framework, called admissibility-based
transformation (ABT), that is theoretically based on formalized, provable correctness criteria and
practically no longer requires transformation functions to work under all conditions. Compared to
previous approaches, ABT simplifies the design and proofs of OT algorithms.

Key words: CSCW, collaboration, consistency control, group editor, operational transformation

1. Introduction

Group editors allow a group of human users to view and modify shared
documents over a computer network. Example documents include software
programs and documentation, web pages, online encyclopedia, and music scores
(Bellini et al. 2002). To increase the productivity of human users, it is well
understood that multi-user editors must be as responsive as single-user counter-
parts, and the users must be allowed to make contributions freely in parallel
without blocking each other (Begole et al. 1999; Ellis et al. 1991; Hymes and
Olson 1992; Sun et al. 1998).

Over the past decade, operational transformation (OT) (Ellis and Gibbs 1989)
has been well established for concurrency control in group editors (Sun and
Ellis 1998). The technique has been implemented in many products including
CoWord (Sun et al. 2006), ACE, Gobby, SubEthaEdit, and most recently Google
Wave. In an OT-based group editor, conceptually, the shared document is
replicated at every site; local editing operations are allowed to execute as soon as
they are generated; remote operations are transformed before execution to repair
inconsistencies. As a result, local response time is not sensitive to communication

Computer Supported Cooperative Work (2010) 19:1–43 © Springer 2009
DOI 10.1007/s10606-009-9103-1

latencies and the users can modify any part of the shared data without being
blocked for the sake of concurrency control. The use of OT improves
effectiveness and productivity of collaboration in certain applications (Begole
et al. 1999; Bellini et al. 2002).

Most existing OT algorithms are developed under two theoretical frameworks:
(Ressel et al. 1996) and (Sun et al. 1998). The first framework (Ressel et al. 1996)
requires that OT algorithms preserve causality and achieve convergence. In
particular, transformation functions must satisfy two strong properties for
achieving convergence, which together require that transforming any operation
with any two sequences (of the same set of concurrent operations in different
execution orders) always yield the same result. Unfortunately, this has turned out
very difficult to achieve, as confirmed in the (Ressel et al. 1996; Sun et al. 1998
Li and Li 2008a; Oster et al. 2005a). The second framework (Sun et al. 1998)
futher includes a new condition termed “intention preservation”, in addition to
causality preservation and convergence. However, to our best knowledge, the
condition of intention preservation has not been formalized rigorously.
Consequently, algorithms following this framework are generally not formally
proved with regard to intention preservation and often need to be patched to
address newly discovered counterexamples.

In this paper, we propose an alternative framework called admissibility-based
transformation (ABT). Theoretically, it requires only two correctness conditions,
causality preservation and admissibility, that are formalized and provable. The
new admissibility condition requires that the execution of every operation be
“admissible”, i.e., not violating object relations that have been established by
earlier admissible executions. Because convergence is implied by these two
conditions, our consistency model does not include an explicit condition of
convergence. Practically, it establishes a principled design methodology in
which sufficient conditions of transformation functions are first identified and a
suitable control procedure is then found to satisfy those sufficient conditions.
This way, the control procedure and transformation functions are not separated
as in previous works (Suleiman et al. 1998; Sun and Ellis 1998)—instead, they
work synergistically in ensuring correctness; correctness of the algorithm can be
easily proved without requiring the transformation functions to work in all
possible cases. Due to the above properties of ABT, it is easier to develop OT
algorithms and prove their correctness.

At the algorithm level, the framework is elaborated on two primitive
characterwise insert and delete operations in the context of linear documents.
Roughly, the history buffer at each site is represented by an insertion sequence
concatenated by a deletion sequence. Before an operation is propagated to remote
sites, the effects of the deletions are excluded from it. When it is integrated at a
remote site, it is always transformed with insertions before deletions. That is, when
two concurrent insertions are transformed, the intermediary characters between
them (if any) are alway present. As a result, the notorious “false-tie” problem that

2 Du Li and Rui Li

has been under heated debate over the past decade (e.g., Sun et al. 1998; Sun and
Sun 2006) will not occur. This is an important result in its own right.

The remainder of this paper is organized as follows. Section 2 gives a
background of OT and motivates this research. Section 3 formalizes our new
consistency model and correctness conditions. Sections 4 and 5 elaborate how
to develop and prove an OT algorithm that satisfies the proposed conditions.
Section 6 compares related works. Section 7 summarizes contributions and
future directions.

2. Background and motivation

In a typical OT-based group editor, the shared document is replicated at all sites.
Editing operations are first executed locally and then propagated to remote sites
for synchronization. As a result, high local responsiveness and high concurrency
are achieved. However, consistency control becomes a challenging issue because
a remote operation often has to be executed in a new context that may be different
from the context in which it is generated. Apparently it may not be safe to
directly apply the operation in the new context without taking extra measures. In
the following subsections, we formulate the problem and overview related
approaches.

2.1. Problem abstraction

The basic idea of OT can be illustrated by the simple example as shown in
Figure 1. Suppose two sites start editing the same document “NOT” and they
collaboratively change it to “LOT”. Site 1 generates operation o1=ins(1,‘L’) to
insert character ‘L’ at position 1 (or between ‘N’ and ‘O’), while concurrently site
2 generates operation o2=del(0,‘N’) to delete character ‘N’ at position 0. When o1
is received at site 2, if it is executed as it is in the current state “OT”, the wrong

"NOT"

"LOT"

o1=ins(1, L)
o2=del(0, N)

o2=del(0, N)
o1=ins(1, L)

"NLOT"
"OT"

"OLT"

o1 =ins(0, L)

"LOT"

site 1 site 2

Figure 1. OT allows operations to be executed in different orders at different sites.

3An Admissibility-Based Operational Transformation Framework

state “OLT” will result. The intuition of the seminal work in (Ellis and
Gibbs 1989) is to transform o1 with o2, the concurrent operation that has been
executed, to incorporate its effect such that o1 will be executed at site 2 in the
form of o01 ¼ ins 0; ‘L’ð Þ, which yields the correct state “LOT”. As a result, the
final states at both sites converge and the intentions of both operations are
preserved (Sun et al. 1998).

The problem of OT-based consistency control can be abstracted as follows:
Suppose that an operation o is generated in (document) state s at site i and is first
executed in s. Then o is propagated to another site j by message passing, where
j≠ i, and is to be executed in some state s′ at site j. The problem is how site j
executes operation o in state s′ or, alternatively, how to compute a “correct” form
of o, denoted as o′, that can be executed safely in the new state s′.

Assume that all sites in the system start from the same initial state s0 and, as a
convention, each site maintains a log of operations which are stored in their order
of execution at that site (Ellis and Gibbs 1989). Usually the “context” of an
operation, namely, the state in which it is generated or executed, can be
represented by the operation log (or history buffer) (Sun et al. 1998). To solve the
problem, we must answer two questions: First, what outcome of o′ is considered
“correct”. Second, how to develop an OT algorithm that computes the “correct” o′
and, moreover, how to prove that the solution is “correct”.

2.2. Correctness criteria

It has been understood that in group editors data replicas at all sites must
converge in the same state and the execution of all operations must preserve their
natural cause-effect order (Ellis and Gibbs 1989; Ressel et al. 1996). Additionally,
the data replicas must not only converge but the converged content must be
further constrained (Sun et al. 1998). In particular, a group text editor must ensure
not only that all sites have the same set of characters but also that the characters
are in specific logical order for them to make sense together (Li and Li 2004). For
example, a document containing word “not” may become something else if the
characters are misordered as “ton”. So far we have seen two different approaches
to formulating the extra constraints in (textual) group editors, as follows.

2.2.1. Intention preservation
In the first approach, group editors are required to preserve operation intentions
(Sun et al. 1998). The condition of intention preservation is that executing an
operation o at a remote site j must achieve the same effect as the intention of o
when it is generated at site i. However, the constraint of “operation intention” has
not been rigorously defined to our best understanding. On one hand, this conveys
a good intuition and leaves a free space for interpreting it in a variety of
application domains, such as texts (Sun et al. 1998; Sun 2002), structured
documents (Davis et al. 2002), graphics (Sun and Chen 2002), and music scores

4 Du Li and Rui Li

(Bellini et al. 2002). On the other hand, however, the ambiguity causes problems
in verifying whether or not an algorithm really preserves operation intentions.

Example 1 Consider the following well-known scenario (Sun et al. 1998). Three
sites concurrently generate three operations in the same state of three characters
s=“abc”: o1 at site 1 inserts character ‘x’ between ‘b’ and ‘c’, o2 at site 2 deletes
character ‘b’, and o3 at site 3 inserts character ‘y’ between ‘a’ and ‘b’. At site 2,
suppose o2 and o1 are executed first and its state becomes s′=“axc”. The
question is what the intention of o3 is with regard to s′.

The intention of o3 in its generation state s is to insert ‘y’ between ‘a’ and ‘b’.
However, s′ no longer contains ‘b’. Hence the intention of o3 is preserved as long
as ‘y’ is inserted between ‘a’ and ‘c’. According to (Sun et al. 1998), both “ayxc”
and “axyc” are equally intention preserving and the algorithm only needs to
choose either one to converge into. Observe, however, that the intention of o1 is
to insert ‘x’ after ‘b’ while the intention of o3 is to insert ‘y’ before ‘b’. Hence,
due to the intermediary character ‘b’, character ‘y’ must precede ‘x’ in any state
as long as they appear together, implying that the final state must be
unambiguously “ayxc”. This example reveals that the notion of operation
intention as it has been interpreted (Sun et al. 1998; Sun 2002) fails to constrain
the interplay of the intentions of multiple concurrent operations (Li and Li 2004).

2.2.2. Operation effects relation
To address the limitation of intention preservation, our early work introduced the
notion of “operation effects relation” ≺ to model the logical order between
operation effects (Li and Li 2004). For any operation o, its effect character c(o) is
the character to be inserted or deleted by o. In Example 1, when o1 is generated,
the characters are ordered as ‘a’≺‘b’ ≺ ‘x’ ≺ ‘c’, and when o3 is generated, the
order is ‘a’ ≺ ‘y’ ≺ ‘b’ ≺ ‘c’. By transitivity, the order between all characters is
‘a’ ≺ ‘y’ ≺ ‘b’ ≺ ‘x’ ≺ ‘c’. Conceptually, the effects relation between the three
concurrent operations o1, o2, and o3 is c(o1)≺c(o2) ≺ c(o3) and the order between
‘y’ and ‘x’ must be ‘y’≺‘x’ without ambiguity.

Based on this concept, we formalize three consistency conditions as an
alternative to (Sun et al. 1998): causality preservation, single-operation effects
preservation, and multi-operation effects relation preservation (CSM) (Li and
Li 2004). In more recent work (Li and Li 2007), we rigorously define the effects
relation and rephrased CSM in two conditions: causality preservation and
operation effects relation preservation (CR). However, in CSM and CR, the
operation effects relation ≺ is a total order (over all characters that ever appear in
the system) that has to be defined in the consistency model. Although the relation
is natural and obvious in simple scenarios as in Example 1, it turns out a
nontrivial task to develop a complete and rigorous definition, which is illustrated
by the following scenario.

5An Admissibility-Based Operational Transformation Framework

Example 2 Consider a scenario in which three sites start from the same state
s=“ab”. Site 1 generates o1 to insert ‘x’ between ‘a’ and ‘b’, yielding “axb”, and
site 2 concurrently generates o2 to insert ‘y’ between ‘a’ and ‘b’, yielding “ayb”.
After executing o1, site 3 generates o3 to insert ‘z’ between ‘a’ and ‘x’, yielding
s′=“azxb”. The question is what the relation is between the three effect
characters ‘x’, ‘y’ and ‘z’ such that ‘y’ can be correctly inserted into s′.

In this scenario, essentially there is no natural order between characters ‘x’ and
‘y’ because they are inserted at the “same” position without knowledge of each
other. To have a consistent view, we can mandate an order such that the one
inserted by a site with a smaller id precedes the other, yielding ‘x’≺‘y’. When the
same rule is applied directly when deciding the order between ‘y’ and ‘z’, we get
‘y’ ≺ ‘z’ because they are inserted independently of each other and the site id of
‘y’ is smaller. However, this result causes a problem because, due to transitivity,
we have ‘x’ ≺ ‘y’ ≺ ‘z’, which contradicts the character order in state s′ in which
‘z’ ≺ ‘x’. Therefore, the order between ‘y’ and ‘z’ cannot be determined without
considering the fact that o1 happened before o3. That is, we have to consider not
only the site ids of operations that insert these two characters but also the order in
which these operations are executed (Li and Li 2007).

In addition, consider the following scenario: A user first deletes character ‘b’
from state “abc”, yielding “ac”, and then inserts ‘x’ between ‘a’ and ‘c’, yielding
“axc”. To define the effects relation would require deciding an order between ‘b’
and ‘x’. Note that there is not a natural order between these two characters unless
they appear in the same state, e.g., by recovering ‘b’ via selective undo. However,
again, in this and similar situations, an application or algorithm specific policy
must be used to break the position tie, e.g., by mandating that the newly inserted
character ‘x’ precedes the deleted character ‘b’ in the total order.

The concept of effects relation overcomes the problems of operation intention
by formalizing the effects of single operations and introducing a new constraint
on the interplay between the effects of multiple concurrent operations. It is an
important step because finally we have a set of verifiable correctness criteria.
However, to define a total order, we have to consider algorithm-specific tie-
breaking policies, types of primitive operations, and execution order of
operations. These limitations render the correctness criteria tightly coupled with
specific algorithms and appear “artificial” to other algorithms, especially those
that use different tie-breaking policies, as revealed in the review process of (Li
and Li 2008a).

2.3. OT-based algorithms

Given the problem abstraction in Section 2.1 and the correctness criteria in
Section 2.2, now we consider how existing OT-based approaches work. In an
abstract sense, computing o′ in state s′ for a given operation o that is generated in

6 Du Li and Rui Li

state s includes two steps: (1) choose or build a proper transformation path P
from s to s′, and (2) transform o against P. Conceptually a path is a sequence of
operations, the execution of which in one state s leads to another state s′. There
generally exist multiple paths from s to s′: Some paths are unidirectional such that
we only need to transform o with some path Pu, while some other paths are
bidirectional such that we transform o first against a backward path Pb from s to a
significant intermediate state s′′ and then against a forward path Pf from s′′ to s′.
Existing OT algorithms naturally fall into three categories by the transformation
paths they use, as reviewed in the following three subsections.

2.3.1. Unidirectional transformation paths
Many existing OT algorithms, such as adOPTed (Ressel et al. 1996), SOCT2
(Suleiman et al. 1997), GOTO (Sun and Ellis 1998), SDT (Li and Li 2004; Li and
Li 2008a; Li and Li 2008b), and TTF (Oster et al. 2006b) adopt unidirectional
transformation paths.

To integrate a remote operation o, their paths are only composed of operations
that are concurrent with o. Typically, when operation o generated in state s at site
i is ready to be executed in state s′ at site j, the current history buffer H of site j is
transposed into a concatenation of two sequences Hh and Hc, where Hh includes
all operations in H that happened before o and Hc includes operations in H that
are concurrent with o. Due to causality preservation, state s is but the state that is
obtained by executing sequence Hh in the initial state s0. Hence we just need to
inclusively transform o with Hc to incorporate its effects such that the result, o′,
can be safely executed in state s′.

The advantage of this approach is that the transformation path is simple to
construct by established methods (Suleiman et al. 1997; Sun and Ellis 1998).
However, the transformation function is generally difficult to design because
operations in Hc may be ordered arbitrarily at different sites. To maintain
consistency, it is formally established that the (inclusion) transformation function
must verify two transformation properties, TP1 and TP2 (Knister and Prakash 1994;
Ressel et al. 1996), which ensure that transforming any operation o along arbitrary
path Hc yields the same result. This is an underpinning assumption in a large body
of work, e.g., (Ressel et al. 1996; Suleiman et al. 1997; Sun and Ellis 1998;
Sun 2002).

Nevertheless, we observe two gaps in this approach: First, there is a theoretical
gap. In (Ressel et al. 1996), it is only proved that satisfying TP1 and TP2 implies
convergence. However, to our best knowledge, no sufficient conditions have been
formally established for achieving intention preservation. As will be shown in
the counterexamples of Section 4.2, the context equivalence condition given in
(Sun et al. 1998) is not sufficient for preserving operation intentions as they
interpreted.

Second, there is a practical gap. It turns out very difficult to design and prove
transformation functions that verify TP2, as has been confirmed repeatedly in the

7An Admissibility-Based Operational Transformation Framework

literature (Ressel et al. 1996; Suleiman et al. 1997; Sun et al. 1998; Imine
et al. 2003; Li and Li 2008a; Oster et al. 2005a). Due to the need to consider
complicated case coverage, formal proofs are very complicated and error-prone,
even for OT algorithms that only treat two characterwise primitives (insert
and delete) (Li and Li 2008a). The work by Molli and colleagues (Molli et
al. 2003; Oster et al. 2005a; Imine et al. 2006; Oster et al. 2006b) resorts to
theorem provers and tries to automatically prove TP1 and TP2. According
to (Ressel et al. 1996), TP1 and TP2 are sufficient conditions for convergence.
That is, even if TP1 and TP2 are proved, we can only conclude that an
algorithm achieves convergence but cannot draw any conclusion about intention
preservation.

2.3.2. Unique transformation paths
Realizing the difficulties in satisfying TP2, several approaches (Sun et al. 1998;
Vidot et al. 2000; Shen and Sun 2002; Li et al. 2004) were proposed to free TP2
so that “ordinary” transformation functions can be used, which only use basic
operation parameters such as position, type, and site id. In general, they achieve
so by maintaining only one transformation path at all sites every time an
operation o is transformed. Although using the same path achieves convergence,
those approaches do not address how to achieve intention preservation. Counter-
examples in (Li and Li 2008a) show that they violate the natural ordering of
operation effects even though tie-breaking policies are not involved.

2.3.3. Bidirectional transformation paths
LBT (Li and Li 2007) is the first OT work to our knowledge that proposes to
build bidirectional transformation paths. Based on the operation effects relation
discussed above, LBT takes two main steps: (1) it first formally establishes
sufficient conditions that transformation functions can work correctly, i.e.,
maintain the predefined total order, and (2) it then constructs a special
bidirectional transformation path from the history buffer that ensure those
sufficient conditions and hence any operation can be integrated correctly. In this
new approach, theoretically it no longer needs to verify TP2 and intention
preservation as in previous work.

2.4. Improvements over previous works

In hindsight, there are success lessons as well as spaces for improvement.
Theoretically, using a total order as the basis for formalizing correctness criteria
can be beneficial for developing new OT algorithms and proving their
correctness. However, the total order is necessarily algorithm-specific and hence
cannot be used directly for verifying other OT algorithms. Practically, our
experience with SDT (Li and Li 2008a) and LBT (Li and Li 2007) reveals that
building special transformation paths is significantly easier than designing

8 Du Li and Rui Li

TP2-satisfying transformation functions. As shown in LBT, by building special
transformation paths, we no longer need to design complicated transformation
functions that work in all possible cases. However, due to the needs to explicitly
derive and maintain the total order in transformation functions, transformation
paths in LBT are very complicated.

This paper proposes a systematic scheme to address limitations in previous
work and improve our early results. Theoretically, it no longer requires a
predefined total order of characters. A new graph-based analysis tool will be
provided as a basis to formalize a more “natural” partial order between characters
that does not need algorithm-specific policies. Practically, based on the new
theory, the design and proof of OT algorithms are significantly simplified. There
is no need to store and retrieve an explicit effects relation and the transformation
paths are more straightforward. As an evidence, in Sections 4 and 5, we will
show how a simple and efficient algorithm is designed and proved. In Section 6,
we will present more indepth comparisons between this work and related
previous works.

3. A new consistency model

Observe that there are certain logical relations between characters in a document.
A “correct” state must have the right set of characters as well as the right logical
relations. For example, in Figure 1, state “LOT” is correct while state “OLT” is
not. The intuition of our approach is to examine how characters are ordered in the
initial state and how the order evolves as characters are inserted and deleted,
based on which we study what is correct and how to achieve correctness. The rest
of this section answers the question of what correctness means in group editors.
Section 3.1 gives a model of group editor. Section 3.2 introduces a graph-based
analysis tool. Section 3.3 defines some related concepts based on the graph.
Section 3.4 formalizes correctness criteria.

3.1. Group editor

As a convention in group editors (Ellis and Gibbs 1989), we model the shared
document as a linear string of characters (objects). Let the position of the first
character in a string be zero. Notation s[i] is the character at position i in string s
and s[c] is the position of character c in s, where 0≤ i<|s| and |s| is the number of
characters in s. We assume that every appearance of any character is unique. With
OT, we can uniquely identify characters by their positions in a linear address
space, without the costs of maintaining global object ids.

For availability and responsiveness reasons, the shared document is replicated
so that users can edit their local replicas. Suppose that all sites start from the same
initial document state s0. Synchronization among cooperating sites is achieved by

9An Admissibility-Based Operational Transformation Framework

exchanging messages that piggyback editing operations. In addition to an internal
primitive (null operation �), we define two primitives for use in applications:

– ins(p,c): insert character c at position p.
– del(p,c): delete character c at position p.

For any operation o, attribute o.t is its type (ins/del), o.c is the effect character
to be inserted or deleted, o.p is its position parameter, and o.id is the id of the site
that generates o. Apparently o.p is relative to some definition state s, denoted as
s=dst(o). Note that only o.p is relative to dst(o), whereas the other attributes will
never be changed after o is generated. The definition state s is the generation state
of o if o is generated in s, or the execution state of o if o is to be executed in s
(Sun et al. 1998). The fact that the execution of operation o in state s yields state
s′ is denoted as s′=exec(s,o). Following the long established conventions (Ellis
and Gibbs 1989), given any two operations o1 and o2, we say o1→o2 if o1
happened before o2, and o1 ∥ o2 if o1 is concurrent with o2.

3.2. Effects relation graph

The effects relation graph (or “graph” for brevity) is a global data structure for
studying the behavior of group editors. Its purpose is to visualize effects of all
operations in one unified view so as to signify abnormal executions. Note that the
graph is only for theoretical analysis and need not be implemented in actual
systems. It is constructed incrementally as operations are generated and executed
at cooperating sites as if by an external observer of the system.

A graph G is a tuple <V,E>, where V is a set of nodes and E⊆V×V is a set of
directed edges. Every node corresponds to a character that ever appears in the
system and every edge represents the relation between two characters. Each node
n ∈ V has three attributes: n.char is the character it corresponds to; n.counter
traces how the character is inserted or deleted; and n.color indicates the status,
white for normal and grey for abnormal. An edge <nb, na>∈ E means that nb.
char appears on the immediate left of na.char in some state.

The algorithm in Figure 2 shows how G is maintained. Suppose that V and E
are initially empty and N is the number of sites. We first use the initial state s0 to
initialize G: If s0 is not empty, for each character c ∈ s0 add a new node n to V
such that n.char=c, n.counter=N, and n.color=white. Then for any two nodes nb,
na ∈ V add an edge <nb, na> to E, if nb.char appears on the immediate left of na.
char in s0, or s0[nb.char]+1=s0[na.char].

We assume that every operation is executed locally first before it is propagated
to remote sites. Every operation o is invoked once when it is generated (and
executed locally) and once when it is executed at every remote site. Every
invocation updates G once. Hence G is eventually updated N times by every
operation o. The order of invocations must maintain their natural cause-effect

10 Du Li and Rui Li

relation: (1) given any operation o, its local invocation must be earlier than any
remote invocation, and (2) given any o1 and o2, if o1→o2, invocation of o1 must
be earlier than invocation of o2 at every site.

Every invocation of any o is always relative to some state s at some site. The
local invocation of an insertion o always leads to the creation of a new node n in
G with n.char=o.c, n.counter=1, and n.color=white. After that, every remote
invocation of insertion o increments n.counter by one. The invocation of insertion
o in s will cause a new character o.c to be inserted between two neighboring
characters s[o.p−1] and s[o.p]. Hence if these two characters exist, we also
add the two edges <nb, n> and <n, na> into G, where nb.char=s[o.p−1] and
na.char = s[o.p]. As an insertion o is executed in different states at different sites,
it is possible that different nodes are connected with node n in this way.

When invoking a deletion o on G, it is similarly possible that o.p may point to
different characters in different execution states. Since o.c is a constant once o is
generated and we never delete nodes in G, we can always find the node n ∈ V that
contains character o.c. If s[o.p] fails to point to the right character o.c, we turn the
color of n to grey, which signals an abnormal status. Otherwise we decrement
n.counter by one. If n.counter has been decremented this way more than N times,
we also turn the color of that node to grey.

As shown in Figure 3, we use an example to illustrate how a graph is
constructed. Suppose that three sites start from initial state s0=“abc” and
concurrently generate three operations: o1=ins(2,‘x’) yields state “abxc” at site 1,
o2=del(1,‘b’) yields state “ac” at site 2, and o3=ins(1,‘y’) yields state “aybc” at

Figure 2. Initializing and maintaining a global graph G.

11An Admissibility-Based Operational Transformation Framework

site 3. The graph as initialized with s0 contains three white nodes each with
counter value 3. After the three operations are executed locally, regardless of the
order of invocation on the graph, the counter of node ‘b’ is decremented to 2; a
new node ‘x’ is created with counter value 1 and with a new edge from node ‘b’
and a new edge to node ‘c’; and a new node ‘y’ is created with counter value 1
and with a new edge from node ‘a’ and a new edge to node ‘b’.

We assume that every operation is executed locally once it is generated, without
any interference from concurrent operations. It is obvious that the current ordering
between all characters in the graph, after all operations are invoked locally, is
“natural” and reflects the operation intentions. Ideally, all remote invocations
should be consistent with this natural order obtained by all local invocations. The
correct final graph is shown in Figure 3(iv). In particular, the order between ‘x’ and
‘y’ must be that ‘y’ precedes ‘x’ wherever they appear together.

When o1 is received at site 2, suppose it is executed as o01=ins(1,‘x’), which
yields state “axc”. Then invocation of o01 on the graph increments the counter of
node ‘x’ to 2 and adds a new edge from node ‘a’ to node ‘x’. When o3 arrives at
site 2, suppose it is executed as o03 = ins(2,‘y’), which yields state “axyc”.
Apparently this result violates the natural order between ‘x’ and ‘y’. The
invocation of o03 increments the counter of node ‘y’ to 2 and adds a new edge

site 1 site 2 site 3

o1
o2

o3

"abxc"

"ac"
"aybc"

a(3) b(3) c(3)

a(3)
b(2)

c(3)

y(1) x(1)

a(3) b(0) c(3)

y(3) x(3)

1

2

3

a(3) b(2) c(3)

y(2) x(2)

a(3) b(2) c(3)

y(2) x(2)

a(3) b(2) c(3)

y(1) x(2)

(i) three concurrent operations

(ii) the initial graph (normal)

(iii) graph after local invocations (normal)

(iv) the correct final graph (normal)

(v) after invoking o1 at site 2 (normal)

(vi) after invoking o3 at site 2 (abnormal)

(vii) after invoking o2 at site 3 (abnormal)

Figure 3. An example of normal and abnormal effects relation graphs.

12 Du Li and Rui Li

from node ‘x’ to node ‘y’. As a result, there is a cycle between ‘x’, ‘y’ and ‘b’.
Intuitively, o03 is not a correct invocation.

When o2 is received at site 3, if it is executed as-is in the current state “aybc”,
the wrong character ‘y’ is deleted. As a result, the color of node ‘b’ is turned grey.
Intuitively, o2 is not a correct invocation.

3.3. Some key concepts

As an analysis tool rather than a specific concurrency control algorithm, the graph
maintenance algorithm in Figure 2 itself does not calculate the execution form of
any operation in its execution state. Instead, the operation parameters (esp.
position) are determined by the group editor or, more specifically, its concurrency
control algorithm. The graph detects possible inconsistent behavior of the group
editor. In the following, based on the effects relation graph, we first define what a
consistent graph is like (Definitions 1–4), then derive the effects relation from a
consistent graph (Definition 5), and finally derive correctness conditions
(Definitions 6–12).

Definition 1 Given two nodes, n1 and n2, in graph G, the order between them
with regard to G, denoted as orderG(n1,n2), is defined as (1) n1 n2 if there is a
path from n1 to n2, or n2 n1 if there is a path from n2 to n1; (2) cyclic if n1 n2
and n2 n1; (3) unorderable if neither n1 n2 nor n2 n1.

Definition 2 Given two graphs, G1 and G2, we say that G1 is similar to G2,
denoted by G1≈G2, if (1) G1 and G2 have the same set of nodes with identical
attributes, and (2) for any nodes n1 and n2, orderG1 n1; n2ð Þ ¼ orderG2 n1; n2ð Þ.

Definition 3 Given two graphs, G1 and G2, G1 is a subgraph of G2, denoted by
G1⊆G2, if (1) any node n in G1 is also in G2, and (2) for any two nodes n1 and n2
in G1 (and G2), orderG1 n1; n2ð Þ ¼ orderG2 n1; n2ð Þ.

By these definitions, any graph G is a subgraph of itself and is similar to itself.

Definition 4 [Consistent Graph] An effect relation graph G is consistent if G is
acyclic and without grey nodes.

Lemma 1 Given two graphs, G and G′, if G is consistent and G′⊆G, G′ is also
consistent.

Suppose that the final graph resulted after all generated operations have been
invoked at all sites be consistent and let it be Gf. Due to the algorithm in Figure 2,
no node is ever deleted from the graph. Hence every character that ever appears

13An Admissibility-Based Operational Transformation Framework

in the system has a corresponding node in Gf. Let Ct be the set of characters that
ever appear.

Definition 5 [Effect Relation ≺] For any c1, c2 ∈ Ct, we say c1≺c2 if there exists
a path from node n1 to n2 in Gf, where n1.char=c1 and n2.char = c2.

Note that we define relation ≺ only if the final graph is consistent. Apparently
relation ≺ is transitive. That is, c1≺c2 and c2≺c3 implies c1≺c3. However, relation ≺
is only a partial order. For example, if ‘x’ is deleted from state “axb” and then ‘y’ is
inserted to yield “ayb”, it does not order ‘x’ and ‘y’ directly unless ‘x’ appears in the
same state as ‘y’. In general, for any two characters c1, c2 ∈ Ct, if they ever appear
in the same state of a group editor, their relation must have been determined by the
group editor, or more specifically, its concurrency control algorithm. There must be
two nodes that contain c1 and c2, respectively, in the graph and at least one path
exists between them.

Definition 6 A state s corresponds to a graph G if (1) for every c ∈ s, there is one
and only one node n ∈ G such that n.char=c, and (2) for every node n in G, there
is one and only one character c ∈ s such that c=n.char.

Definition 7 [Reachable State] A given state s is reachable if s corresponds to a
subgraph of Gf and for any two characters c1, c2 ∈ s, if s[c1]<s[c2] then c1≺c2
holds.

Corollary 1 Given any reachable state s, its corresponding graph is a subgraph
of Gf and is consistent.

Definition 8 [Admissible Operation] Any operation o is admissible in its
definition state s=dst(o), if s is reachable (or its corresponding graph G is
consistent) and the invocation of o results in a consistent graph.

Axiom 1 The initial state s0 is reachable.
Axiom 2 The graph constructed from s0 is consistent.

Assumption 1 If state s is reachable, any operation o generated in s is admissible
in s.

The following theorem states an important implication of an operation being
admissible in its definition state. We omit its proof because the theorem is self-
explanatory.

Theorem 1 Given an operation o admissible in state s, if o.t=del and s is not empty,
then o.c=s[o.p] must hold; if o.t=ins, then o.c must be inserted between two
characters, s[o.p−1] and s[o.p], and s[o.p−1]≺o.c≺s[o.p], if these two characters exist.

14 Du Li and Rui Li

Definition 9 [Operation Sequence] An operation sequence sq is an ordered list of
operations such that sq[i+1] is defined in the state resulted from executing sq[i], or
dst(sq[i+1])=exec(dst(sq[i]), sq[i]), where 0≤ i<|sq|. In particular, state dst(sq[0])
is called the definition state of sq, or dst(sq)=dst(sq[0]).

Let s=dst(sq). Then sq is executed in s as follows: first execute sq[0] in s, then
execute sq[1] in state exec(s,sq[0]), and so forth. We extend the notion of operation
execution such that s′=exec(s,sq)=exec(exec(s,sq[0]), sq[1,n−1]), where n=|sq| and
sq[1,n−1] is the subsequence of sq ranging from its second to last operation.

Definition 10 [Admissible Operation Sequence] Any operation sequence sq is
admissible in dst(sq) if every operation o in sq is admissible in dst(o).

Lemma 2 Given an operation sequence sq, let s=dst(sq) and s′=exec(s, sq). If s
is reachable and sq is admissible, then s′ is also reachable.

Definition 11 [Effects Equivalence] Given two sequences, sq1 and sq2, that are
defined and admissible in state s, we say that they are effects equivalent, denoted
by sq1≈sq2, if executed in s they yield the same final state.

3.4. Correctness of group editors

Definition 12 [Correctness Criteria] Assume that all sites in a group editor start
from the same initial state s0. The group editor is correct if the following two
criteria always hold.

(1) Causality preservation: For any two operations, o1 and o2, if o1→o2, then o1
is invoked before o2 at any site.

(2) Admissibility Preservation: The invocation of every operation is admissible
in its execution state.

By the initials of these two conditions, we call this model “CA”. Given a
reachable initial state s0, the graph remains consistent because no admissible
invocation introduces a new cycle or a grey node. As a result, in the quiescent
state, in which all generated operations have been executed at all sites, the final
graph Gf is consistent and relation ≺ is well-defined. That is, the invocation of
every operation eventually preserves the effect relation ≺ , which is a partial order.

This model can be used to verify any OT-based group editors, even if they do
not explicitly have the notion of effects relation. Due to the causality-preserving
process of graph construction, the order between characters is essentially
established by the initial state and invocations of local operations in their
generation states. A group editor is correct if the execution of any remote

15An Admissibility-Based Operational Transformation Framework

operation does not contradict the character order established earlier by itself, i.e.,
not introducing cycles and grey nodes. The existence of a cycle between any two
nodes (say n1 and n2) in the graph means that n1.char precedes n2.char in some
state while n2.char precedes n1.char in some other state. The existence of a grey
node n in the graph means that the character n.char should not have been deleted.
Either case may lead to divergence of states at different sites or the violation of
the established character order even if the final states converge.

In Definition 12, we do not include an explicit convergence condition as in
previous work (Ressel et al. 1996; Sun et al. 1998) because convergence is implied
by the two given conditions. Intuitively, in a correct group editor, all inserts and
deletes are executed correctly at every site. As a result, in the quiescent state, all
sites have the same set of characters that are in the same order. That is, all sites
converge in the same state. Assuming that each site maintains a history of locally
executed operations, Theorem 2 asserts that all replicas of the shared data converge
in the quiescent state. Not to be tedious, here we omit the formal proof.

Theorem 2 In a correct group editor, after all generated operations are executed
at all sites, any two histories in the system are effects equivalent.

Therefore, the problem of OT-based concurrency control is how to ensure that
every remote operation is admissible in its execution state. We elaborate how to
achieve so in the remainder of this paper. It is well understood that a typical OT
algorithm consists of two layers: transformation functions determine how to
transform two operations, and a control procedure determines how to call
transformation functions to integrate remote operations (Sun and Ellis 1998).
Accordingly, Section 4 first examines conditions under which an admissible
operation remains admissible after being transformed with another admissible
operation. Section 5 then shows how to ensure the admissibility of every operation
executed in the system.

4. Transformation functions and conditions

In Section 4.1 we define three basic transformation functions. However,
counterexamples show that these functions do not work correctly in some cases.
We examine those cases in Section 4.2 with regard to the proposed consistency
model. After that, we study their sufficient conditions (which ensure the
correctness of transformation functions if satisfied) in Sections 4.3 and 4.4.
Section 4.5 generalizes the conditions to operation sequences.

4.1. Transformation functions

Following the notations in (Sun and Ellis 1998), we say that any two operations,
o1 and o2, are contextually equivalent, denoted as o1⊔o2, if dst(o1)=dst(o2); they

16 Du Li and Rui Li

are contextually serialized, denoted as o1↦o2, if dst(o2)=exec(s, o1) and s=dst
(o1). In the following, we define three binary transformation functions, IT(o1,o2),
ET(o1,o2) and SWAP(o1,o2), where o1 and o2 are assumed to be admissible in
their definition states. Ideally, we would like the results returned from these
transformation functions to be also admissible.

Given two operations, o1 and o2, where o1⊔o2 and s=dst(o1)=dst(o2),
the purpose of o01=IT(o1,o2) is to include the effect of o2 into o1 such that
o2↦o01 and o01 is defined in state s′=exec(s,o2). Function 1 defines IT(o1, o2). If
o2.p>o1.p, meaning that o2 inserts or deletes a character on the right of the
target position of o1, we return o1 as it is because the effect of o2 does not affect
o1.p in s′.

If o2.p<o1.p and o2.t=ins, meaning that o2 inserts a character on the left of the
target position of o1, we increment o1.p by one because the original position of o1
has been shifted by the insertion of o2.c in s′ (lines 3–4). If o2.p<o1.p and o2.t=
del, meaning that o2 deletes a character on the left of the target position of o1, we
decrement o1.p by one (lines 5–6).

When o2.p=o1.p, we need to consider four combinations of the types of o1 and
o2. If o2.t=ins and o1.t=del, meaning that o2 inserts character o2.c right before
character o1.c=s[o1.p], we increment o1.p by one because, due to the semantics of
insertion and deletion, the original character o1.c has been shifted by the insertion
of o2.c in s′ (lines 8–9). If o2.t=del and o1.t=ins, we return o1 as-is because the
deletion of o2.c does not affect o1.p in s′. For the two cases in lines 10 and 12, we
define the following two policies:

(P1) If o1 and o2 insert at the same position in s, we compare their site ids to

order o1.c and o2.c such that the one with a smaller site id precedes the other
(lines 10–11). That is, if o2.id<o1.id, we increment o1.p.

17An Admissibility-Based Operational Transformation Framework

(P2) If o1 and o2 attempt to delete the same character in s, the one to be executed
later (o1) is transformed into an identity operation � so that the same
character will not be deleted more than once (lines 12–13).

Given two operations, o1 and o2, where o2↦o1, s=dst(o2), and s′=dst(o1)=exec
(s,o2), the purpose of o01=ET(o1,o2) is to exclude the effect of o2 from o1 as if
o2 had not happened such that o01⊔o2 and o01 is defined in s. Function 2 defines
ET(o1,o2). If o2.p>o1.p, meaning that o2 inserted or deleted a character on the right
of o1.c, we return o1 as it is because the effect of o2 did not affect o1. If o2.p<o1.p,
meaning that o2 inserted (deleted) a character on the left of o1.c, we decrement
(increment) o1.p by one to exclude the effect of o2, as in lines 2–6.

18 Du Li and Rui Li

When o1.p=o2.p, we need to consider four combinations of the operation
types. (1) If o1.t=o2.t=del, meaning that o2 and o1 delete two neighboring
characters in s in tandem, the one deleted first must precede the one deleted next,
In this case, we increment o1.p by one had o2.c not been deleted earlier (lines 8–9).
(2) If o2.t=ins and o1.t=del, meaning that o1 deletes the character inserted by o2,
we say that o1 depends on o2 and o01 is not defined (lines 10–11). In this case, it
does not make sense logically to exclude the effect of o2 from o1. (3) If o1.t=o2.t=
ins, meaning that they insert two characters in s in tandem, the one inserted later
must precede the one inserted earlier, In this case, we return o1 as it is because the
effect of o2 would not affect o1.p even if o2 had not been executed. (4) The
following tie-breaking policy is hidden:

(P3) If o1.p=o2.p, o1.t=ins and o2.t=del, meaning that o2 deleted character o2.c=
s[o2.p] and o1 inserts character o1.c at the same position (o1.p in s′ and o1.p=
o2.p), then o1 is returned as-is.

The third transformation function SWAP(o1,o2) is defined in Function 3. It
transposes two operations, o2 and o1, where o2↦o1, into o01 and o02 such that o01↦o02
and [o2,o1]≈[o01, o

0
2]. Conceptually, this amounts to first processing o01=ET(o1, o2)

to get o01⊔o2 and then o02=IT(o2, o
0
1) to get o01⊔o

0
2. As will be discussed later in

Sections 4.3 and 4.4, IT and ET have different sufficient conditions. This way the
correctness of SWAP would depend on both IT and ET. Observe, however, that
the relation between o1.c and o2.c is known after processing ET(o1, o2). We merge
the rules of ET and IT in the definition of SWAP so that the sufficient condition of
SWAP is the same as that of ET.

4.2. The need for tighter IT/ET preconditions

Intuitive as they are, IT and ET as defined above cannot guarantee that the
transformed operations are admissible. More specifically, the contextual equiv-
alence condition o1⊔o2 is not sufficient for ensuring the correctness of IT(o1,o2)
and the contexual serialization condition o2↦o1 is not sufficient for ET(o1,o2). In
the following, we discuss several counterexamples and analyze them based on
our consistency model.

4.2.1. Counterexamples
Based on our consistency model, Example 3 first explains a classic counterex-
ample (Suleiman et al. 1997; Sun et al. 1998) to the contextual equivalence
condition of IT.

Example 3 As shown in Figure 4, the initial state is s0=“abc”. At site 2, after o2=
del(1,‘b’) is invoked locally, the state becomes s1=“ac”. Then two concurrent

19An Admissibility-Based Operational Transformation Framework

operations, o1=ins(2,‘x’) and o3=ins(1,‘y’), are integrated in tandem. First we get
o01=IT(o1, o2)=ins(1,‘x’) and s2=exec(s1, o01)=“axc”. Invoking o01 in s1 adds a
new edge from node ‘a’ to ‘x’. Now we compute o03 that can be executed in s2.
From s0=dst(o3) to s2=dst(o003) there are a sequence of two operations [o2, o

0
1], both

operations being concurrent with o3. We first get o03 =IT(o3, o2)=ins(1,‘y’) and
then compute o003 =IT(o03, o

0
1). Since the positions of o01 and o03 tie, by the IT

definition in Function 1, we compare their site ids to break tie and get o003=ins
(2,‘y’). The execution of o003 in state s2 yields s3=“axyc”. Invoking o01 in s2 adds an
edge from node ‘x’ to ‘y’, which yields a cycle. That is, o003 is not admissible in s2.

Example 4 As shown in Figure 5, suppose the initial state is s0=“ab”. The

generation of o1=ins(1,‘x’) results in state s1=“axb”. After that, the generation
of o2=ins(2,‘y’) yields s2=“axyb”. It is easy to see that o02 =ET(o2,o1)=ins(1,‘y’)
is admissible in state s0. Then o002 =IT(o02 ,o1) is defined in state s1. However, by
the IT definition in Function 1, o002=ins(1,‘y’) is obviously not admissible in state
s1 because its invocation creates a cycle between ‘x’ and ‘y’.

site 1 site 2site 3

o1=ins(2,‘x’)

o2=del(1’b’)

o3=ins(1,‘y’)

s1="ac"

s0="abc"

o1’=ins(1,‘x’)

s2="axc"

o3’’=ins(2,‘y’)

s3="axyc"
"ayxc" "ayxc"

after all local invocations

after invoking
o3’’ in s2

a b c

y x

y x

a b c

Figure 4. Inclusively transforming two concurrent insertions: o003=IT(IT(o3, o2), IT(o1, o2)) is
not admissible in s2.

s0="ab"

site 1 site 2

o1=ins(1,’x’)

o2=ins(2,’y’)

s1="axb"

s2="axyb"

o2’=ET(o2,o1)
 =ins(1,’y’)

o2’’=IT(o2’,o1)
 =ins(1,’y’)

a b

x

after invoking o1 and o2

invoking
o2’’ in s1

y

a b

x y

Figure 5. Inclusively transforming an insertion with another insertion that happened before
it. o002 =IT (ET(o2, o1), o1) is not admissible in s1.

20 Du Li and Rui Li

Example 3 reveals that, although the contextual equivalence condition of IT is
satisfied, the result of IT(ox,oy) may not be admissible when ox ∥ oy, ox.t=oy.t=ins
and ox.p=oy.p. Example 4 shows that, although the contextual equivalence
condition of IT is satisfied, the result of IT(ox,oy) may not be admissible when
ox ⟶ oy, ox.t=oy.t=ins and ox.p=oy.p.

For counterexamples to the contextual serialization condition of ET, consider
the following two scenarios.

Example 5 Consider the scenario as shown in Figure 6. The system initial state is
s0=“abc”. Site 1 generates o1=ins(2,‘x’) and concurrently site 2 generates o2=
del(1,‘b’). At site 2, when o1 is received, we compute o01=IT(o1,o2)=ins(1,‘x’),
which is admissible in its execution state s1=exec(s0,o2)=“ac”. By the ET
definition in Function 2, o001=ET(o01 ,o2)=ins(1,‘x’) is defined in state s0.
However, o001 is not admissible because its invocation in s0 results in a cycle
between node ‘x’ and ‘b’.

Example 6 As shown in Figure 7, three sites start from s0=“abc”. Site 1 and site 2
concurrently generate two operations o1=del(1,‘b’) and o2= ins(2,‘x’),
respectively. At site 3, the execution of o1 yields s1=“ac”. When o2 is
received, we get o02 =IT(o2,o1)=ins(1,‘x’). The execution of o02 yields s2=
exec(s1, o02)=“axc”. After that, site 3 generates o3= ins(2,‘y’), yielding s3=
exec(s2,o3)=“axyc”. Now consider how to compute o003 that is defined in s0. From
s2=dst(o3) to s0=dst(o02) there are a sequence of two operations [o1, o02]. We first
get o03=ET(o3, o

0
2)= ins(1,‘y’) and then o003=ET(o

0
3, o1)=ins(1,‘y’). As shown in

Figure 7, o003 is not admissible in state s0 because its invocation introduces a cycle.
Example 5 reveals that the result of ET(ox, oy) may not be admissible when

oy ∥ ox, oy.t=del, ox.t=ins, and oy.p=ox.p. Example 6 reveals that the result of
ET(ox,oy) may not be admissible when oy ⟶ ox, oy.t=del, ox.t=ins, and oy.p=ox.p.
Note, however, that the contextual serialization condition of ET is satisfied in both
scenarios.

s0="abc"

site 1 site 2

o2=del(1,‘b’)

o1=ins(2,‘x’)

o1’=ins(1,‘x’)

s1="ac"

s2="axc"

a b c
x

a b c
x

after invoking o1’ in s1

invoking
o1’’ in s0

Figure 6. Exclusively transforming an insertion with a concurrent deletion: o001=ET(IT(o1,
o2), o2) is not admissible in s0.

21An Admissibility-Based Operational Transformation Framework

4.2.2. Further analyses
The above four counterexamples show that care must be taken when the basic IT/
ET functions as defined in Functions 1 and 2 are used. Here we first define an
important concept “landmark characters” and analyze these scenarios further to
draw intuitions of solutions.

Definition 13 [Landmark Character] For any three characters, c1, c2, c3 ∈ Ct,
where Ct is the set of characters that ever appear in the system, we say that c3 is a
landmark character between c1 and c2, if either c1≺c3≺c2 or c2≺c3≺c1.

In the IT scenario of Example 3, the tie between o03 and o01 is caused by the fact
that landmark character ‘b’ between ‘y’ and ‘x’ (‘y’≺‘b’ ≺ ‘x’) is not present in
state s2. Because o01=IT(o1,o2) and o03 = IT(o3,o2) have been processed before we
do IT(o03, o

0
1), in state s2=dst(o01)=dst(o

0
3), the landmark character ‘b’ has been

deleted by operation o2. In other words, if another path (e.g., [o1,o2] at site 1 in
Figure 4) is taken such that character ‘b’ is not deleted before inclusively
transforming the two insertions, the problem will not occur. For example, when
we do IT(o3,o1), since the landmark character ‘b’ is present in state s0=dst(o1)=
dst(o3), there is no tie at all. As a result, o03=IT(o3,o1)=ins(1,‘y’) is admissible in
state exec(s0,o1)=“abxc”.

On the other hand, consider the following scenario. Suppose two sites have the
same initial state s0=“ab”. Site 1 generates o1=ins(1,‘x’) and concurrently site 2
generates o2=ins(1,‘y’). In this case, due to the lack of landmark character
between ‘x’ and ‘y’, there is no natural order between them and hence, in theory,
either result “axyb” or “ayxb” is acceptable. In IT (Function 1), policy P1 is
adopted to break the tie such that the result is unambiguously “axyb”. As a result,
both o01=IT(o1,o2)=ins(1,‘x’) and o01 =IT(o2,o1)=ins(2,‘y’) are admissible.

In the ET scenario of Example 6, when o3 is generated in state s2=“axc”, it is
clear from Figure 7 that the landmark character between ‘y’ and ‘b’ is ‘x’,

o1=del(1,’b’)

o2=ins(2,‘x’)

o3=ins(2,‘y’)

o2’=ins(1,‘x’)

o1=del(1,’b’)

o3’=ET(o3,o2’)
 =ins(1,‘y’)

o3’’=ET(o3’,o1)
 =ins(1,‘y’)

site 2site 1 site 3

s0="abc"

s1="ac"

s2="axc"

s3="axyc"

"abxc"

"ac"
a b c

x

after invoking o3 in s2

invoking
o3’’ in s0

y

a b c

xy

Figure 7. Exclusively transforming an insertion with a deletion that happened before it:
o003=ET(ET(o3,IT(o2, o1)), o1) is not admissible in s0.

22 Du Li and Rui Li

namely, ‘b’≺‘x’ ≺ ‘y’. However, after processing o03=ET(o3, o
0
2), the definition

state of o03 or dst(o
0
3), in which ‘x’ is assumed to not have been inserted by o02, is

s1=“ac”. The tie in processing ET(o03, o1) is essentially caused by the absence of
landmark character ‘x’ in s1. In other words, the problem will not arise had the
landmark character ‘x’ been present in s1. For example, suppose that o2 is
executed before o1 at site 3 before o3 is generated. Then the path will instead be
[o2, o01], where o

0
1=del(1,‘b’). There will be no tie in computing o003, the form of o3

relative to state s0: We first get o03 ¼ ET o3; o01
� �

=ins(3,‘y’) and then o003=ET(o
0
3,

o2)=ins(2,‘y’). Obviously o003 is admissible in s0.
On the other hand, consider the following scenario. Starting from s0=“abc”, a

user first generates o1=del(1,‘b’) and then o2=ins(1,‘x’). There is neither
landmark character nor natural order between ‘b’ and ‘x’. In theory, either ‘b’≺
‘x’ or ‘x’ ≺ ‘b’ is acceptable. In ET (Function 2), policy P3 is adopted such that
the relation is mandated as ‘x’≺‘b’ unambiguously. The result o02=ET(o2, o1)=ins
(1,‘x’) is admissible in s0.

The above analyses give us the intuition that, although the basic IT/ET
functions are not guaranteed to yield admissible results on arbitrary transforma-
tion paths, it is possible to find some special transformation paths for them to
work correctly. On those special paths, the landmark characters must be present,
if they exist at all, when the results of IT/ET could be nondeterministic. The tie-
breaking policies (P1 and P3) should be used only when landmark characters do
not exist.

For any two characters c1, c2 ∈ Ct, we denote the set of landmark characters
between c1 and c2 as Cld (c1, c2)={ c3 ∈ Ct | c1≺c3≺c2 ∨ c2≺c3≺c1 }. For any two
operations, o1 and o2, set Cld(o1.c, o2.c) can be used to determine the order
between o1.c and o2.c. However, we do not really need to compute the whole set
Cld (o1.c, o2.c). By transitivity of relation≺ , the knowledge that there exists (at
least) one landmark character between them is good enough for concluding o1.c≺
o2.c or o2.c ≺ o1.c. It is often whether or not this set is empty (�) that matters. In
addition, when inclusively or exclusively transforming o1 and o2, their effects
relation should only depend on characters inserted or deleted by operations that
happened before either o1 or o2 or both, but not by those operations that are
concurrent with or happened after both o1 and o2. By causality, only the subset of
landmark characters that appear in the system earlier than either o1.c or o2.c are
necessary for determining their “natural” order.

In Section 4.3, and 4.4, we will establish a set of sufficient conditions that
amend contextual equivalence and contextual serialization. In particular, we only
need to identify conditions under which these basic IT/ET functions produce
admissible results. Then in Section 5 we show how to build special
transformation paths that satisfy those conditions such that operations can be
correctly integrated. We do not need to ensure the correctness of IT/ET in all
possible cases.

23An Admissibility-Based Operational Transformation Framework

4.3. Sufficient conditions of IT

Theorem 3 Given two operations, o1 and o2, that are defined and admissible in a
reachable state s, then o01=IT(o1, o2) is admissible in s′=exec(s, o2), if one of the
following conditions holds:

(1) o1 � p 6¼ o2 � p
(2) o1� p¼ o2 � pð Þ ^ o1 � t ¼ ins ^ o2 � t ¼ delð Þ _ o1 � t ¼ del ^ o2 � t ¼ insð Þ_ð

o1 � t ¼ o2 � t ¼ delð ÞÞ
(3) o1 � p ¼ o2 � pð Þ ^ o1 � t ¼ o2 � t ¼ insð Þ ^ o1 o2kð Þ ^ Cld o1 � c; o2 � cð Þ 6¼ ;ð Þ
This theorem is proved by the following three lemmas.

Lemma 3 o01 is admissible in s′ if condition (1) holds.

Proof Without loss of generality, assume o2.p<o1.p. We need to consider four
cases: (1) o1.t=o2.t= ins, (2) o1.t=del ∧ o2.t= ins, (3) o1.t = ins ∧ o2.t=del, and (4)
o1.t=o2.t=del. Not to be tedious, here we only prove case (1). Proofs of other
cases are similar.

Let G be the consistent graph corresponding to s. Due to o2.p<o1.p, we have
o2.p−1<o2.p≤o1.p−1<o1.p. Consider the following four characters ca=s[o2.p−1],
cb=s[o2.p], cd=s[o1.p−1], and ce=s[o1.p]. Their relation is either ca≺cb≺cd≺ce or
ca≺cb=cd≺ce.

Since o2 is admissible in s, the invocation of o2 on G produces a consistent
graph G′ and s′ is also reachable. It introduces a new node containing o2.c and
two new edges if they are not in G yet: one from ca to o2.c and the other from o2.
c to cb. This does not change the order between ca, cb, cd, and ce. Relative to s′,
however, because of the insertion of o2.c, we have ca=s′[o2.p-1], o2.c=s′[o2.p],
cb=s′[o2.p+1], cd=s′[o1.p], and ce=s′[o1.p+1]. Their relation is either ca≺o2.c≺
cb≺cd≺ce or ca≺o2.c≺cb=cd≺ce.

By IT defined in Function 1, we have o01.p=o1.p+1. Hence cd=s′[o
0
1.p−1], and

ce=s′[o01.p]. The invocation of o01 on G′ produces graph G″, which introduces a
new node containing o1.c and two new edges (if they are not in G′ yet): one from
cd to o1.c and the other from o1.c to ce. Their relation is either ca≺o2.c≺cb≺cd≺
o1.c≺ce or ca≺o2.c≺cb=cd≺o1.c≺ce. No new cycle is introduced by o01. Hence
G″ is also consistent, which means that o01 is admissible in s′. □

Lemma 4 o01 is admissible in s′ if condition (2) holds.

Proof Because one operation, say o2, is a delete, by Theorem 1, o2.c is already in
state s. Then we only need to determine the relation between o2.c and the other
character o1.c. The proof is easy and omitted. □

Lemma 5 o01 is admissible in s′ if condition (3) holds.

24 Du Li and Rui Li

Proof Since the assertion must hold in spite of specific execution order of
concurrent operations, we consider a simple case in which the effects of all
operations concurrent with both o1 and o2 are not in s.

Let G be the consistent graph corresponding to state s, ca=s[o2.p−1], and cb=
s[o2.p]. The invocation of o2 on G yields a consistent graph G′, which introduces
a new node containing o2.c and two new edges (if they are not in G yet): one
from ca to o2.c and the other from o2.c to cb. Due to o1.p=o2.p, the invocation of
o1 in G would similarly yield a consistent graph with a new node containing o1.c
and two new edges: one from ca to o1.c and the other from o1.c to cb. Now invoke
o1 on G′ and add node o1.c and edges<ca, o1.c> and <o1.c, cb> first without
considering the relation between o1.c and o2.c. Let the resulting graph be G″.

Due to the analyses of Example 3 in Section 4.2, we know that the landmark
characters in the graph are not always present in the current execution state s.
However, if we can somehow find a transformation path such that state s includes
all possible landmark characters, namely, Cld(o1.c,o2.c)⊆s, deciding the relation
between o1.c and o2.c becomes straightforward. Specifically, if Cld(o1.c,o2.c)≠;,
there must be at least one landmark character between o1.c and o2.c in s and G.
This implies o1.p≠o2.p, which is the case of condition (1). On the other hand, if
Cld(o1.c, o2.c)=;, the node of o1.c and the node of o2.c are unorderable in G″.
Then only adding an edge between node o1.c and node o2.c introduce no new
cycle in G″. According to the IT definition in Function 1, if o1.id<o2.id, an
edge <o1.c, o2.c> is added; or otherwise <o2.c, o1.c> is added. □

By the above proofs, we draw the following important corollary, in which
condition Cld(o1.c,o2.c)⊆ s means that the landmark characters between o1.c and
o2.c, if any, must be present in s. Note that in Cld(o1.c,o2.c) we only need to
consider effect characters of operations that happened before either o1 or o2 or both.

Corollary 2 Given two insert operations, o1 and o2, that are defined and
admissible in a reachable state s, if o1 ∥ o2 and Cld(o1.c,o2.c)⊆s, then o01=IT(o1,o2)
is admissible in s′=exec(s,o2).

4.4. Sufficient conditions of ET and SWAP

Theorem 4 Given two operations, o1 and o2, where o2 is defined and admissible
in a reachable state s and o1 is defined and admissible in s′=exec(s, o2), then o01=
ET(o1, o2) is admissible in s, if one of the following conditions holds:

(1) o1 � p 6¼ o2 � p
(2) o1 � p ¼ o2 � pð Þ ^ o1 � t ¼ o2 � t ¼ insð Þ
(3) o1 � p ¼ o2 � pð Þ ^ o1 � t ¼ o2 � t ¼ delð Þ
(4) o1 � p ¼ o2 � pð Þ ^ o1 � t ¼ insð Þ ^ o2 � t ¼ delð Þ ^ o2 ! o1ð Þ ^ o1 is generated in s0ð Þ

25An Admissibility-Based Operational Transformation Framework

This theorem is proved by the following four lemmas. Not to be tedious, we
only show how to prove Lemmas 7 and 9. Proofs of the other two are similar.

Lemma 6 o01 is admissible in s if condition (1) holds.

Lemma 7 o01 is admissible in s if condition (2) holds.

Proof Since o2 is admissible in s, the graph G corresponding to s must be acyclic.
Let cb=s[o2.p−1] and ca=s[o2.p], if they exist. The invocation of o2 adds a new
node containing o2.c and two edges <cb, o2.c> and <o2.c, oa>, if they are not in
G. Let the resulting graph be G′, which corresponds to s′. Since o1 is admissible
in s′, its invocation must generates an acyclic graph G″ which contains a new
node o1.c and two edges <cb, o1.c> and <o1.c, o2.c>. By the ET definition in
Function 2, o01=ET(o1, o2) is defined in state s and o01 p=o1.p = o2.p. That is, the
execution of o01 in s adds two edges <cb,o1.c> and <o1.c, ca> into G″. This
invocation does not introduce a new cycle given that there is no cycle between cb
and ca in G. Hence o01 is admissible in s. □

Lemma 8 o01 is admissible in s if condition (3) holds.

Lemma 9 o01 is admissible in s if condition (4) holds.

Proof Since o2 is admissible in s, the graph G corresponding to s must be
consistent and o2.c=s[o2.p] must hold. Let cb=s[o2.p-1] and ca=s[o2.p+1], if they
exist. There must be two edges <cb, o2.c> and <o2.c, ca > in G. After invoking
o2, we have ca =s′[o2.p]. Since the invocation of o2 only decrement the counter of
node o2.c, these two edges are also in graph G′ that corresponds to s′. Since o1 is
admissible in s′ and o1.p=o2.p, invocation of o1 yields a new node o1.c and two
edges <cb, o1.c> and <o1.c, ca > in the resulting acyclic graph G″.

By policy P3 in the ET definition (Function 2), position parameter o01.p =o1.p is
defined in s. Invocation of o01 in s adds a new edge <o1. c, o2.c> in G″ and results
in a path from cb to o2.c. Since o1 is generated in s′, node o1.c is only connected
from cb and to ca in G″. If adding edge <o1.c, o2.c> introduces a new cycle, there
must exist a path from o2.c to cb in G″, which contradicts the fact that there is
already an edge <cb, o2.c> in G″ and G″ is acyclic. Therefore, o01 is admissible in
state s. □

Additionally, we can show that condition (4) actually implies that Cld (o1.c, o2.c)=
;, which justifies the use of policy P3 in the above proof. Otherwise, Cld (o1.c, o2.
c)≠; and there must exist at least one landmark character c ∈ s′ that is directly related
to the new character o1.c generated by o1 in s′ and c must be between the position of
o2.c and o1.c. That is, o1.p≠o2.p, which contradicts o1.p=o2.p.

We have explained in Section 4.1 that ET and SWAP have the same sufficient
conditions. SWAP(o1, o2) is conceptually equivalent to first doing o01=ET(o1, o2)

26 Du Li and Rui Li

and then o02=IT(o2, o
0
1). That is, if o

0
1=ET(o1, o2) is admissible, then the order

between o1.c and o2.c is known and thus o02=IT(o2, o
0
1) is also admissible.

Corollary 3 Suppose that two operations o1 and o2 are both admissible and o2↦
o1. Let <o01 ,o

0
2>=SWAP(o1, o2). Then o01↦o02 and both o01 and o02 are admissible

under the same conditions (1–4) specified in Theorem 4.

4.5. Conditions of reordering sequences

In this subsection, we study a few special operation sequences and their con-
ditions. Those sequences will be used in Section 5 for constructing transformation
paths.

Definition 14 [CP Sequence] A sequence sq is causality-preserving (CP) iff for
any two operations sq[i] and sq[j], where 0≤ i, j<|sq|, if sq[i]→sq[j], then i< j
must hold. Any sequence sq is trivially a CP sequence if |sq|<2.

In a causality-preserving sequence sq, for any o ∈ sq, all operations in sq that
happened before o must precede o.

For any two operations, o1 and o2, we say o1 depends on o2, if o1 deletes the
character inserted by o2, i.e., o2.t= ins , o1.t=del, o1.c=o2.c and o2→o1.

Definition 15 [DP Sequence] A sequence sq is dependency-preserving (DP) iff
for any two operations sq[i] and sq[j], where 0≤ i, j<|sq|, if sq[j] depends on sq
[i], then i<j must hold. Any sequence sq is trivially a DP sequence if |sq|<2.

In a dependency-preserving sequence sq, any operation oj that depends on any
oi must follow oi in sq. However, note that oj is not required to immediately
follow oi. The cause-effect relation is only preserved between pairs of operations
that have dependencies. Hence a causality-preserving sequence must also be
dependency preserving, but not vice versa.

Definition 16 [ID Sequence] A sequence sq is an insertion-deletion (ID)
sequence, iff for any two operations sq[i] and sq[j], where 0≤ i, j<|sq|, we have
i<j if either (1) sq[i].t=ins ∧ sq[j].t=del, or (2) sq[i].t=sq[j].t ∧ sq[i] → sq[j].
Any sequence sq is trivially an ID sequence if |sq|<2.

Let sq1 and sq2 be two operation sequences. Notation sq1 • sq2, where sq1↦
sq2, or dst(sq2)=exec(dst(sq1),sq1), returns the concatenation of sq1 and sq2;
notation sq • o, where sq↦o, or dst(o)=exec(dst(sq), sq), returns the
concatenation of sequence sq and operation o. By definition, an ID sequence sq
is the concatenation of an insertion subsequence sqi and a deletion subsequence

27An Admissibility-Based Operational Transformation Framework

sqd, or sq=sqi • sqd. Both sqi and sqd are causality-preserving. Sequence sq is
dependency-preserving but not necessarily causality-preserving.

Definition 17 [HC and IHC Sequences] Given an operation o and a sequence
sq, we say that sq is a happened-before-concurrent (HC) sequence with regard to
o, iff for any two operations sq[i] and sq[j], where 0≤ i, j<|sq|, we have i<j if
either (1) sq[i]→o ∧ sq[j] ∥ o, or (2) sq[i]→sq[j]. Any sequence sq is trivially
an HC sequence if |sq|<2. If all operations in an HC sequence sq are insertions,
we say that sq is an IHC sequence.

By definition, an HC sequence sq (with regard to o) is a concatenation of two
subsequences sq=sqh • sqc, where sqh includes all operations in sq that happened
before o and sqc includes all operations in sq that are concurrent with o. Note that
sq, sqh and sqc are all causality-preserving sequences.

In a group editor, every site maintains a history buffer H which records
operations in their order of execution at that site. If every operation in H is
admissible, then H is an admissible sequence. As a convention, s0 denotes the
initial state.

Theorem 5 Suppose that H is an admissible history and sq is an ID sequence
such that sq≈H. Let o be an operation that is generated in state s=exec(s0, H).
There must exist an admissible ID sequence sq′ such that sq′≈(sq • o).

Proof The fact that o is generated in state s implies that all operations in H
happened before o. If o is a deletion, we get sq′ simply by appending o to sq, or
sq′=(sq • o) and clearly sq′ is an admissible ID sequence. If o is an insertion, we
rewrite sq=sqi • sqd, where sqi includes all insertions in H and sqd includes all
deletions in H. We first swap o with every operation in sqd from right to left,
yielding sq′d and o′ as the result, and then get sq′=((sqi • o′) • sq′d). If the
swappings are correct, then sq′≈(sq • o).

Now we prove the swapping step is correct or, alternatively, the resulting o′
and sq′d are admissible. If |sqd|=0, the assertion trivially holds. For |sqd|=n>0, we
swap o and sqd[n−1], sqd[n−2], ..., sqd[1], sqd[0] in turn. We prove the assertion
by induction on k, the number of swaps that involve o, where 1<k<n=|sqd|.

k=1: consider sqd[n−1] and let it be d1. Since o is generated in state dst(o), by
Corollary 3, whether or not o.p=d1.p, the results are admissible. Let the resulting
form of o be o(1) and dst(o(1))=s(1). It is obvious that d1.c ∈ s(1).

k→(k+1): Assume that swapping o and sqd[n−k, n−1], the rightmost k
operations in sqd, is correct. As a result, suppose o becomes an admissible
operation o(k) defined in state dst(o(k))=s(k), which must include all the effect
characters of sqd[n−k,n−1]. Then consider swapping o(k) with the (k+1)th

operation sqd[n-(k+1)]=d(k+1). If o(k).p≠d(k+1).p, by Corollary 3, the assertion

28 Du Li and Rui Li

holds. If o(k).p=d(k+1).p, there must be no landmark character between o(k).c and
d(k+1).c, if any, present in s(k). We consider the following two cases:

First, Cld (o
(k).c, d(k+1).c)=;. Adding an edge between nodes containing these

two characters by policy P3 will not introduce a cycle.
Second, Cld (o(k).c, d(k+1).c)≠;. Without loss of generality, assume that there

exists at least one landmark character x such that d(k+1).c≺x≺o(k).c but x ∉ s(k).
Character x must not be an effect character of some deletion in sqd[n−k,n−1].
Otherwise, it would have been put back in s(k) by the first k swappings (exclusion
transformations). Since o is generated in s, characters that are inserted after the
generation of o are out of the question. It is also impossible for x to be inserted
after the execution of d(k+1) and before the generation of o because sq is an ID
sequence and operations in sqd[n−k,n−1] are all deletions. Finally, if x is deleted
by some operation in sqd[0, n−(k+2)], since x ∉ s(k), there must be another
character y ∈ s(k) such that x≺y≺o(k).c. By transitivity, we have d(k+1).c≺y≺o(k).
c, which implies o(k).p≠d(k+1).p, a contradiction. That is, the assumed landmark
character x does not exist.

Therefore, the (k+1)th swapping is also correct. When o is an insertion, the
resulting (sqi • o′) • sq′d is an admissible ID sequence of (k+1) operations.

Theorem 6 Given an admissible operation o and an admissible CP sequence sq,

where all operations in sq are insertions, there must exist an admissible IHC
sequence sq′ with regard to o such that sq≈sq′.

Proof Figure 8. gives an algorithm for finding the required sq′. It scans the input

sequence sq from left to right and appends every operation concurrent with o to
sequence sqc. Every operation that happened before o is swapped with sqc and the
result is appended to sequence sqh. Obviously if sq is causality preserving, then
sqh and sqc are each causality preserving. Since sq is an insertion sequence,
SWAP is only used between insertions in the algorithm. By Corollary 3, this is
correct. □

Figure 8. To convert a CP sequence into an HC sequence.

29An Admissibility-Based Operational Transformation Framework

The convert2HC function was adopted from previous work (Suleiman et al.
1997; Sun and Ellis 1998). It is understood that, in line 7, sq[j] ∥ sqc[k] must
hold. Otherwise, the relation must be either sq[j]→sqc[k] or sqc[k] → sq[j]. Since
sq is a causality-preserving sequence, it is impossible to have sq[j] → sqc[k]. On
the other hand, by line 5, we know sq[j]→o. If sqc[k]→sq[j], by transitivity, we
would have sqc[k]→o, which contradicts sqc[k] ∥ o.

5. Integrating local and remote operations

The conditions in Theorems 3, 4, 5 and 6 are sufficient because the assertions
always hold once the conditions are satisfied. This section gives algorithms for
integrating local and remote operations. The main idea is to ensure that every
operation is admissible in its execution state by satisfying these sufficient
conditions while avoiding conditions that are not covered. Section 5.1 presents
the algorithms. Section 5.2 gives a complete example. Section 5.3 proves
correctness.

5.1. Control procedure

We consider a group editor of N sites that start from the same initial state s0.
Every site maintains a state vector sv for achieving causality preservation. Every
element of sv is an integer that is initialized as zero. The ith element, denoted as
sv[i], where i=1, 2, ..., N, is the current site’s knowledge of the number of
operations that have been executed at site i. Each time an operation o is generated
at site i, it is executed immediately and sv[i] is incremented by one. Then o is
timestamped by sv (by assigning sv to attribute o.v) and broadcast to remote sites.
Each time a remote operation generated at site i is integrated, sv[i] is incremented
by one. The vector timestamps are used for determining the ∥ and→relations
between operations (Ellis and Gibbs 1989).

Each site maintains an operation log H, which is an ID sequence. H is often
rewritten as H=Hi • Hd, where Hi includes all the insertions and Hd all the
deletions. Note that this paper does not address group undo. Hence we omit the
other log that is usually present in group editors (e.g., (Sun 2002)) that stores all
operations in their order of execution.

Figure 9 gives the control procedure at site i. Every time a local operation o is
generated, we always execute it directly in its generation state s=exec(s0, H). All
operations in H happened before o and o is admissible in s. After o is executed,
we call updateHL(o, H) to add o to H and compute its admissible form o′ in state
s′=exec(s0, Hi), the state just after only all insertions (that happened before o)
have been invoked in s0. Then we propagate o′ to remote sites.

Each site maintains a queue RQ to store remote operations that are received
from other sites. Every received remote operation is appended to RQ. To ensure
causality preservation, a remote operation is invoked only when it is causally

30 Du Li and Rui Li

ready (Sun et al. 1998): Given a remote operation o generated at site i, o is
causally ready at site j, iff (1) o.v[i]=svj[i]+1 and (2) for ∀k≠ i: o.v[k]≤svj[k].

We scan RQ from left to right for the first causally-ready remote operation o.
Then o is removed from RQ and function updateHR(o, H) is called to add o to H
and compute its admissible form o′ in current state s=exec(s0,H). If o′ is not �,
we execute o′ in s. In fact, o′ is � only when two sites concurrently attempt to
delete the same character. In this case, to avoid the appearance of grey nodes in
the (conceptual) effect relation graph, the deletion to be invoked later is
transformed into an identity operation � and discarded.

Figure 10 defines function updateHL(o, H), which serves two purposes: (1) to
compute o′, the admissible form of o in state s′=exec(s0, Hi), and (2) to add o into
H. We know that H=Hi • Hd is an ID sequence and o is generated in state s=exec
(s0, H). Hence its admissible form o′ relative to s′ can be computed by swapping
o from right to left with every operation in Hd. Then if o.t=del, we append the

Figure 9. The control procedure at site i.

Figure 10. To add a local operation o into H and make o′ admissible in state s′=exec(s0, Hi).

31An Admissibility-Based Operational Transformation Framework

original form o to H; or if o.t= ins, we append o′ to Hi. This is actually the
algorithm used in the proof of Theorem 5.

Figure 11 defines function updateHR(o, H), which serves two purposes: (1) to
compute o′, the admissible form of o in current state s=exec(s0, H), and (2) to add
o into H. When a remote operation o is received, according to function updateHL
(), it must have excluded the effects of all deletions that happened before o and
have included the effects of all insertions that happened before o. However, o
must have included neither the effects of operations in Hd nor the effects of
operations in Hi that are concurrent with o.

Therefore, we first call function convert2HC(o,Hi) to transpose Hi into an IHC
sequence Hih • Hic with regard to o. Due to causality preservation and function
updateHL(), o must be admissible in state exec(s0, Hih). In line 2 we transform o
such that the result o″ is admissible in state s′=exec(s0, Hi) by calling o″=ITSQ(o,
Hic) to include the effects of Hic into o. Then in line 3 we perform o′=ITSQ(o″, Hd)
such that o′ is admissible in current state s.

After that, we add o into H as follows: If o′=�, it is not added into H. If o′ is a
deletion, we append o′ to H directly. If o′ is an insertion, we add o″ between Hi and
Hd (line 12). To achieve this, we have to include the effect of o″ into every operation
inHd, as in lines 7–11. Initially we have o″⊔Hd[0] and ox=o″. For everyHd[k], since
ox⊔Hd[k], we include the effect of Hd[k] into ox and, at the same time, include the
effect of ox into Hd[k] such that the resulting ox satisfies Hd[k+1]⊔ox and next time
we still inclusively transform two context equivalent operations Hd[k+1] and ox.

Figure 11. To add a remote opreation o into H and make o′ admissible in state s=exec(s0, H).

32 Du Li and Rui Li

5.2. An integrated example

Notations in this example follow last subsection. Suppose that three sites start
from the same initial state s0=“abc”. The three sites concurrently generates o1=
del(1,‘b’), o2=ins(2,‘x’) and o3=ins(1,‘y’), respectively. Site 1 generates o4=del
(0,‘a’) after integrating o1, o2 and o3. Site 2 generates o5=del(0,‘a’) after
integrating o2 and o1. Site 3 generates o6=ins(2,‘z’) after integrating o3, o2 and
o1. Eventually all sites converge in state s6=“yzxc”. These operations are
integrated as in Figure 12, which is explained in three stages.

5.2.1. Stage one
Initially the history buffer at each site is empty. Hence o1, o2 and o3 are
propagated to remote sites as they are. The effects graph after local invocations of
these three operations is as shown in Figure 12.

At site 1, after executing o1 locally, its state is s11 =“ac" and history buffer is
H1

1 =[o1]. When o2 is received, since there is no insertion in H1
1 , we have o

00
2=o2

and o02=IT(o2, o1)=ins(1,‘x’). After executing o02, the state is s
2
1 =“axc”. Then o002

is added into H1
1 , which yields H1

2 =[o002 ,o
0
1], where o

0
1=IT(o1, o

00
2)=del(1,‘b’)=o1.

To be concise, we rewrite H1
2 =[o2, o1]. When o3 arrives, there is an insertion and

a deletion in H1
2 . We first get o003=IT(o3,o2)=ins(1,‘y’)=o3 and then o

0
3=IT(o

00
3 ,o1)=

ins(1,‘y’)=o3 . After executing o03, the state becomes s13 =“ayxc”. Adding o003

o1=del(1,‘b’) o2=ins(2,‘x’) o3=ins(1,‘y’)

o6=ins(2,‘z’)

o5=del(0,‘a’)

site 1 site 2 site 3

o4=del(0,‘a’)

a(3) b(2) c(3)

y(1) x(1)

a(1) b(0) c(3)

y(2) x(3)z(1)

a(0) b(0) c(3)

y(3) x(3)z(3)

after generation of o1,o2,o3

after generation
of o4,o5,o6

after all
invocations

Figure 12. Three sites start from s0=“abc” and converge in s6=“yzxc”.

33An Admissibility-Based Operational Transformation Framework

between o2 and o1 turns o1 into o01=IT(o1, o003)=del(2,‘b’). The history buffer
becomes H1

3 =[o2,o3, o01], where o01=del(2,‘b’).
At site 2, after executing o2 locally, its state is s21 =“abxc” and history buffer is

H2
1 =[o2]. When o1 arrives, we have o01=o

00
1=IT(o1,o2)=del(1,‘b’)=o1. The state

after executing o1 is s22 =“axc” and the history buffer is H2
2 =[o2,o1].

At site 3, after executing o3 locally, the state is s31 =“aybc” and history buffer
H3

1 =[o3]. When o2 arrives, we get o02=IT(o2,o3)=ins(3,‘x’). Executing o02 yields
s32 =“aybxc” and H3

2 =[o3, o02]. When o1 arrives, we get o01=ITSQ(o1,[o3, o
0
2])=

del(2,‘b’). Its execution yields s33 =“ayxc” and H3
3 =[o3,o02, o

0
1].

5.2.2. Stage two
Three concurrent operations o4, o5 and o6 are generated at three sites,
respectively. They are integrated and propagated as follows. The effects relation
graph after locally invoking these operations is shown in Figure 12.

At site 1, when o4 is generated, the history buffer is H1
3 =[o2, o3, o01], where

o01=del(2,‘b’). The new state is s14 =exec(s13, o4)=“yxc”. Appending o4 to
H1

3 yields the new history buffer H1
4 =[o2, o3, o01, o4]. Next, we swap o4 and o01

to get o04=ET(o4, o
0
1)=del(0,‘a’)=o4. Then, we propagate o04 (or o4) to remote

sites.
At site 2, o5 is generated in state s22 =“axc” and H2

2 =[o2, o1]. Integrating o5
yields s23 =“xc” and H2

3 =[o2, o1, o5]. Swapping o5 and o1 yields o05=ET(o5,o1)=
del(0,‘a’)=o5a. Hence we propagate o5 to remote sites as-is.

At site 3, o6 is generated in the context of s33 =“ayxc” and H3
3 =[o3, o02, o

0
1],

where o02=ins(3,‘x’) and o01=del(2,‘b’). Integrating o6 results in s34 =“ayzxc”.
Now swap o6 and o01: first o

0
6=ET(o6,o1')=ins(2,‘z’)=o6 and then o001=IT(o

0
1, o

0
6)=

del(3,‘b’). Adding o06 (or o6) into H3
3 results in H3

4 =[o3, o02, o6, o
00
1]. Then, we

propagate o06 (or o6).

5.2.3. Stage three
At site 1, when o5 is received, the state is s14 =“yxc” and the history is H1

4 =[o2,
o3,o01, o4], where o

0
1=del(2,‘b’). We first get o005=IT(o5,o3)=del(0,‘a’) and then o05=

ITSQ(o005 ,[o01 ,o4])=�. Therefore, o5 is not executed nor added into the history.
That is, s15 = s14 =“yxc” and H1

5 = H1
4 =[o2, o3, o01 ,o4]. When o6 is received, o2→

o6 and o3→o6. Hence o006=o6 and o06=ITSQ(o
00
6, [o

0
1 ,o4])=ins(1,‘z’). Adding o006 (or

o6) into H1
5 yields H1

6 =[o2, o3, o6, o001, o4], where o
00
1=del(3,‘b’). Executing o

0
6 in s

1
5

yields s16 =“yzxc”.
At site 2, when o3 arrives, the state is s23 =“xc” and the history is H2

3 =[o2, o1,
o5]. We first get o003=ITSQ(o

0
3,[o2])=ins(1,‘y’)=o3 and then o03=ITSQ(o

00
3,[o1, o5])=

ins(0,‘y’). Executing o03 yields s
2
4 =“yxc” and adding o003 to history yields H2

4 =[o2,
o003, o

0
1, o

0
5]=[o2, o3, o

0
1, o5], where o01=del(2,‘b’) and o05 = del(0,‘a’)=o5. When o6

arrives, since o2→o6 and o3→o6, we get o006=o6 and o06=ITSQ(o
00
6, [o

0
1, o5])=ins

(1,‘z’). Executing o06 yields s25 =“yzxc” and adding o006 to history yields H2
5 =[o2,

o3, o006, o
00
1, o

00
5]=[o2, o3, o6, o

00
1, o5], where o001=del(3,‘b’) and o005 = del(0,‘a’)=o5.

34 Du Li and Rui Li

When o4 arrives, since o2→o4, o3→o4 and o6 ∥ o4, we get =IT(o4, o6)=del(0,‘a’)=
o4 and o04=ITSQ(o

00
4, [o

00
1 ,o5])=�. Hence o4 is not executed nor added into the

history. That is, the final state is s26 =“yzxc” and history is H2
6 =[o2, o3, o6, o001, o5],

where o001=del(3,‘b’).
At site 3, when o4 arrives, the state is s34 =“ayzxc” and history is H3

4 =[o3, o02,
o6, o02] where o02=ins(3,‘x’) and o001=del(3,‘b’). We get o004=ITSQ(o4, o6)=del
(0,‘a’)=o4 and o04=IT(o

00
4, o

00
1)=del(0,‘a’)=o4. Executing o04 yields s

3
5 =“yzxc” and

adding o004 to history yields H3
5 =[o3, o02, o6, o

00
1, o4]. When o5 arrives, since o3 ∥

o5, o2→o5 and o6 ∥ o5, we first need to transpose the insertion sequence [o3, o02,
o6] into [o2, o03, o

0
6]=[o2, o3, o6]. Then we get o005=ITSQ(o5,[o3, o6])=del(0,‘a’)=

o5 and o05=ITSQ(o
00
5,[o

00
1, o4])=�. Hence o05 is not executed and o005 is not added

into history. That is, the final state is s36 =“yzxc” and history H3
6 =[o3, o02, o6, o

00
1,

o4], where o02=ins(3,‘x’) and o001=del(3,‘b’).
It is obvious that all three sites converge in final state s6=“yzxc”. The final

effects relation is shown in Figure 12. From the graph we can see that there is no
order only between two characters, ‘z’ and ‘b’. This is not surprising because ‘z’
is inserted after ‘b’ is deleted at the same position and they never appear in
the same state. Hence there is no need to decide an order between them. That is,
the effects relation is only a partial order. However, when ‘b’ and ‘z’ appear in the
same state as a result of undo, adding an edge between node ‘z’ to ‘b’ converts
the relation into a total order.

5.3. Proof of correctness

According to Definition 12, a group editor must preserve causality and
admissibility in every operation invocation. By our control procedure, causality
is obviously preserved. Here we only need to prove admissibility preservation.

Theorem 7 The control procedure in Figure 9 ensures that the invocation of any
operation is admissible.

Proof We prove this assertion by induction on n invocations at any site i. When
n=1, it is trivially true. Assume that the first k invocations are admissible at
current site. Consider the (k+1)th invocation o in the following two cases.

First, o is a local operation. By Assumption 1, o is admissible in current state in
which it is generated. All the k operations in H happened before local operation o.
To ensure the correctness of invoking forthcoming operations, we maintain H as
an ID sequence Hi • Hd and call function updateHL(o ,H) to reorder H • o into
another ID sequence H′, the correctness of which is ensured by Theorem 5.
Therefore H′ is an admissible ID sequence of (k+1) operations and the
propagated o′ is admissible in state exec(s0, Hi). Note that the Hi here actually
includes all insertions in H that happened before o because o is generated in
current state s=exec(s0, H).

35An Admissibility-Based Operational Transformation Framework

Secondly, a remote operation o is invoked. Function updateHR(o, H) is called
to make it admissible in the current state s=exec(s0, H) and H=Hi • Hd. In
updateHR(), Hi is first transposed into an IHC sequence Hih • Hic with regard to o.
Theorem 6 ensures the correctness of this step. Hence we have H≈(Hih • Hic) • Hd=
Hih • (Hic • Hd). The next step of updateHR() is to compute o′=ITSQ(o, Hic • Hd).
Due to causality preservation and function updateHL(), o is admissible in state s′=
exec(s0, Hih)=dst(Hic • Hd) = dst(o). In s′, no character has been deleted because
only an insertion sequence Hih has been executed. Since Hic is also an insertion
sequence, when processing o″=ITSQ(o, Hic), all landmark characters are present
and thus the result of every step is admissible due to Theorem 3 and Corollary 2.
By Theorem 3, o′=ITSQ(o″, Hd) is also admissible.

Additionally, we prove that adding the remote operation o into an admissible
ID sequence H with k operations results in an admissible ID sequence H′ with
(k+1) operations. By the control procedure, if o′=�, it is not added to H for
simplicity because H • �≈H. If o is a deletion, we append o′ to H=Hi • Hd and get
H′=Hi • (Hd • o′), which is an admissible ID sequence. If o is an insertion, we add
o″ between Hi and Hd, which entails including the effect of o″ into Hd[k]. Since IT
is between an insertion and a deletion at each step, by Theorem 3, the resulting Hd

is admissible and hence (Hi • o″) • Hd is an admissible ID sequence. □

6. Comparisons with related works

This paper is a significant extension to its conference version in (Li and Li 2005).
Specifically, Sections 1, 2, 4.2, 5.2, 6, and 7 are new; and the presentation of
other sections has been refined. Section 2 conceptually compares the proposed
approach with other approaches. This section makes more indepth and specific
comparisons that cannot be made earlier without presenting details of ABT.

6.1. Transformation functions

The inclusion transformation (IT) and exclusion transformation (ET) functions
given in Functions 1 and 2, respectively, are so called due to (Sun et al. 1998). IT
as defined in Function 1 is similar to (Ellis and Gibbs 1989; Ressel et al. 1996)
because they also only use the basic parameters of an operation o, namely,
position (o.p), site id (o.id), and type (o.t). These definitions are simple and
intuitive.

IT functions defined in SOCT2 (Suleiman et al. 1997) and SDT (Li and Li
2004) use explicit extra parameters, which take extra computation to derive.
Specifically, for instance, SDT uses an extra parameter o.β to denote the position
of o relative to its last synchronization point (a previous state) when it ties with a
concurrent operation in the “current” state. Computing the β parameters is costly
although it is only needed when two insertions tie in IT (Li and Li 2008b).

36 Du Li and Rui Li

Although IT and ET functions defined in GOT (Sun et al. 1998), GOTO (Sun
and Ellis 1998; Sun 2002), TTF (Oster et al. 2006b), and LBT (Li and Li 2007),
and ET functions defined in SDT (Li and Li 2004; Li and Li 2008a; Li and Li
2008b] do not use explicit extra parameters, they use extra internal data structures
to save information that helps break ties in some cases.

The SWAP function (Function 3) resembles those in (Knister and Prakash 1994;
Suleiman et al. 1997; Sun et al. 1998; Sun and Ellis 1998) with different
specifications. However, (Knister and Prakash 1994) does not handle boundary
cases in which the operation positions tie; (Sun et al. 1998; Sun and Ellis 1998)
need extra internal data structures for breaking ties in some cases.

The transpose_bk function in SOCT2 (Suleiman et al. 1997; Suleiman et al. 1998)
is also similar to our SWAP function. Note that SOCT2 only transforms two
concurrent operations. Given two concurrent operations o1 and o2, consider the
scenario in Example 5. The step o01=Transpose_fd(o1, o2) is executed before the
swap step Transpose_bk(o01, o2). The deleted landmark character is effectively
recorded in the updated parameters of the returned insert operation and hence the tie
could be correctly broken inside function Transpose_fd. By comparison, we do not
need to explicitly record deleted characters for the same purpose.

Because of these subtle differences, it is necessary to clearly specify the three
transformation functions for this paper to be self-contained and then study their
preconditions to avoid ambiguity and confusions.

6.2. Design approaches

Many OT algorithms follow the approach proposed in (Ressel et al. 1996),
including SOCT2 (Suleiman et al. 1997), GOTO (Sun and Ellis 1998), and SDT
[Li and Li 2004). Typically, each time a remote operation o is to be integrated, it
transposes the history H into an HC sequence Hh • Hc by calling convert2HC(o,
H) and then inclusively transforms o with every operation in Hc. Since operations
in Hc are allowed to be in different orders at different sites, IT is required to verify
two transformation properties (TP1 and TP2) such that transforming o along
arbitrary paths yields the same result, i.e., convergence (Ressel et al. 1996).
Unfortunately, as revealed in (Li and Li 2008a), due to complicated case
coverage, it is extremely difficult to develop formal proofs manually.

Several approaches, such as GOT (Sun et al. 1998), SOCT3/4 (Vidot et al. 2000),
NICE (Shen and Sun 2002), TIBOT (Li et al. 2004), and COT (Sun and Sun 2006)
are proposed to free TP2 by maintaining the same transformation path (total order
of operations) at all sites every time an operation o is transformed. Although these
algorithms can converge, those approaches are not always able to preserve the
correct object order because they cannot prevent the loss of landmark characters in
their transformation paths, as shown in (Li and Li 2008a; Li and Li 2007). COT as
published does not address how to break the so-called false ties.

37An Admissibility-Based Operational Transformation Framework

In general, the above approaches are developed under the framework of (Sun et
al. 1998), in which the contraint of intention preservation is not intended to be a
rigorous correctness condition for purposes of formal proofs. In the literature,
correctness problems of OT are often attributed to so-called TP2 puzzle (Sun et
al. 1998) or false tie (Sun and Sun 2006). This work to some extent provides
theoretical analyses of those problems because it formally identifies and proves
conditions under which transformation functions or control procedures may go
wrong. The analyses inform design of the ABT algorithm and may provide
insights in the design practice of other OT algorithms. The presented algorithm is
but one of the possible embodiments of the design principles of our ABT
framework.

In WOOT (Oster et al. 2006a) and TTF (Oster et al. 2006b), Oster et al propose
approaches that differ from the above. According to (Oster et al. 2005b), WOOT
uses a model checker to prove convergence by verifying all cases that involve up
to four sites and five characters, which deservers further work with regard to
convergence. TTF uses a theorem prover to verify TP1 and TP2, which are
sufficient conditions for convergence by (Ressel et al. 1996). In both works, they
explain the concept of operation intention somewhat between the interpretation of
(Sun et al. 1998) and our definitions of operation effects relation (Li and Li 2004;
Li and Li 2007; Li and Li 2005). Nevertheless, they do not provide proofs with
regard to their interpretation of intention preservation. It seems that our
formalization of effects relation (Li and Li 2007) or admissibility in this paper
is compatible with and complementary to their approach of automated proofs.
There is a potential that their approach and ours can leverage each other in future
research.

LBT (Li and Li 2007) is the first work that builds special transformation paths
(versus arbitrary paths). Each time a remote operation o is to be integrated, we
first transpose H into an HC sequence Hh • Hc. If o is a deletion, we inclusively
transform o with Hc. If o is an insertion, however, we first transpose Hh into an ID
sequence Hhi • Hhd and then transpose Hhd • Hc into another ID sequence Hi • Hd.
After that, o is first exclusively transformed with Hhd (the backward path) to
exclude its effects and then inclusively transformed with Hi • Hd (the forward
path) to include its effects. The correctness of IT is thus ensured: Since H≈Hhi •
Hi • Hd, when processing IT between insertion o with Hi, the landmark characters
are all present. However, ET in the two transposition steps has to handle
happened-before and concurrent operations ordered arbitrarily. The solution in
LBT is to build ET-safe sequences by reordering the operations according to their
effects relation. Consequently, ET is still very complicated.

In the ABT algorithm presented in this paper, the history H is maintained as an
ID sequence Hi • Hd at every site and, before any operation o is propagated, the
effects of Hd (the backward path), which contains all deletions that happened
before o, have been excluded from o. As a result, when integrating a remote
operation o, we only need to transpose Hi into an HC sequence Hih • Hic and then

38 Du Li and Rui Li

inclusively transform o with Hic • Hd (the forward path). Hence the correctness of
IT is ensured as simply as in LBT. However, ET is no longer required to work on
arbitrary paths: In function updateHL(), ET is only between an (insert or delete)
operation and deletions that happened before it. In function updateHR(), ET is
only between concurrent insertions. Therefore, the handling of ET in ABT is
much simpler.

6.3. Complexities and performance

ABT does not need extra storage space beyond the history buffer. By comparison,
GOTO (Sun et al. 1998; Sun 2002) need extra memory for handling the so-called
“lossy IT” problem. Both GOTO and SOCT2 use function convert2HC(), which
requires ET between an insert and a concurrent delete. As shown in Example 5,
its correctness is not guaranteed unless some information is saved when IT is
performed between concurrent operations. LBT needs to save and retrieve the
effects relation between operations. The space complexity of ABT is only O(|H|),
while those of GOTO and SOCT2 are O(|H|2). However, it is also worth noting
that the control procedure of GOTO and SOCT2 is more general under the
established design framework of (Sun and Ellis 1998); the quadratic space
complexity is derived basing on their provided transformation functions.

In ABT, the time to invoke a local operation is dominated by the execution of
function updateHL(), which is obviously O(|Hd|). By comparison, most other OT
algorithms (except (Ellis and Gibbs 1989; Ressel et al. 1996)) to our knowledge
invoke local operations immediately without any transformation, which takes
constant time O(1) and is conceptually more efficient. The time to invoke a
remote operation is dominated by function updateHR(). Inside function
updateHR(), line 2 takes time O(|Hic|), while line 3 and lines 8–11 both take
O(|Hd|). By Figure 8, the worst-case and expected execution time of convert 2HC
(o, Hi) is O(|Hi|

2). Hence the time to invoke a remote operation is O(|Hi|
2+|Hd|).

Every time a remote operation is integrated, other algorithms (SOCT2, GOTO,
SDT, and LBT) call convert2HC() to transpose the whole history H. Hence the
time complexities of all those algorithms are at least in the order of magnitude of
O(|H|2), which is slower than ABT at least by some factor determined by the ratio
of insertions in H.As revealed in our recent analyses and experiments (Li and Li
2008b; Li and Li 2006), the integration time affects scalability, feedback and
feedthrough times. Hence the efficiency improvement is meaningful.

WOOT (Oster et al. 2006a) needs to uniquely identify every character because
it needs the information to break insertion ties. By their own analyses in (Oster et
al. 2005b), its space complexity is linear in the size of the shared document since
every W-character in WOOT is represented by a five-tuple, which is expensive
when a large document is shared; its time complexity to integrate one (local or
remote) operation is O(|H|3). By their algorithm specification, TTF (Oster et al.
2006b) requires O(|H|) space and takes O(|H|) to integrate one (local or remote)

39An Admissibility-Based Operational Transformation Framework

operation. TTF keeps a record of deleted characters for breaking insertion ties,
which is not required in this work. Nonetheless, we acknowledge that it
represents a tradeoff between space and time complexity when a remote operation
is integrated. In general, our work (Li and Li 2004; and Li and Li 2007; Li and Li
2005) complements theirs with regard to correctness conditions and formal
proofs.

According to (Sun et al. 1998; Li and Li 2008b; Li and Li 2006), OT
algorithms must maintain a relative small history H to achieve interactive
responsiveness in real-time group editors. A garbage collection (GC) scheme
(Sun et al. 1998) can be adopted to periodically remove a prefix of H. Other OT
algorithms store operations in H in execution order and only need to remove the
identified prefix of H. They must also remove those operations from the extra
storage space on which their correctness depends, which however has not been
discussed in the literature. By comparison, GC in ABT is more complicated on
the history but it does not have the memory part. Since H=Hi • Hd and both Hi

and Hd store operations in execution order, it is easy to identify the prefix of Hi

and the prefix of Hd that are to be removed. Note, however, that we cannot
remove the prefixes directly because the removal changes the definition states of
the remaining subsequences in Hi and Hd. To reduce time complexities, we can
first remove the prefix of Hd, adjust the positions of operations in the remainder
of Hd, then remove the prefix of Hi and finally adjust the positions of operations
in the remainders of Hi and Hd. Correctness of this process is ensured by
Theorem 4. Nevertheless, this GC process is more complex than in previous
works (e.g., (Sun et al. 1998)). A careful scheduling is necessary in
implementation so as not to degrade local responsiveness.

7. Conclusions

This paper contributes a novel framework for developing OT algorithms.
Theoretically, we formalize an alternative correctness criterion, called admissi-
bility preservation, based on a new graph-based analysis tool. It only requires that
an OT algorithm integrate every operation in an admissible manner, i.e., without
violating the character order established earlier by the algorithm itself. Compared
to the established model of (Sun et al. 1998), admissibility is formalized and can
be proved. Compared to our early results (Li and Li 2004; Li and Li 2007), it no
longer requires a predefined total order of characters in the consistency model,
which in turn greatly simplifies algorithm design and proofs; the partial order
used in this work does not involve algorithm specific tie-breaking policies and
hence can be used for verifying other algorithms as well.

Practically, this work establishes a principled methodology for developing and
proving OT algorithms. In this approach, it first identifies sufficient conditions for
basic transformation functions and then builds special transformation paths to
synergistically ensure correctness. Compared to previous works, our transforma-

40 Du Li and Rui Li

tion functions do not need to work correctly in all cases, which makes it possible
to just use the most simplified and intuitive transformation functions, and the
control procedure does not need to save extra information for ensuring
correctness. As a result, the algorithm is lucid, without hidden details and costs,
and completely proved, without lurking correctness puzzles.

This paper focuses on the theoretical aspect of OT and is limited to group do in
collaborative editing systems that support two characterwise primitives on a
linear document. As revealed in the literature (Sun et al. 1998; Sun 2002; Davis et
al. 2002; Sun et al. 2004), group do is the foundation of group undo,
characterwise operations are the foundation of stringwise operations, pure text
editors are the foundation of more advanced editors. Based on the new foundation
laid by this work, more recently we have shifted focus to the performance of OT
in mobile applications. Our latest algorithm supports stringwise operations and
sequence transformation, which is able to integrate a remote operation or even a
sequence in O(|H|) time. In addition, our experiments show that, although ABT
takes O(|Hd|) or O(|H|) to invoke a local operation, the real execution time (even
on a Nokia N810 tablet) is less than 4 milliseconds even when |H| is greater than
5,000. Hence the impact on local responsiveness is negligible in practice. Those
results will be reported in separate publications. Our ongoing work is
investigating how to extend ABT for supporting other data structures and group
undo. With correctness criteria formalized and OT algorithms growing more
intricate, automated runtime verification (e.g., as in (Godefroid et al. 2000)) will
also be a complementary direction to explore.

Acknowledgements

The authors thank the anonymous reviewers for their insightful, constructive, and
detailed feedback, which improves the presentation of this work and our
understanding of some of the related works. The authors also thank other researchers,
especially Bin Shao (Fudan University, China) and David Sun (University of
California, Berkeley), for valuable discussions. This research was primarily
conducted when the authors were at Texas A&M University. It was supported in
part by the National Science Foundation under CAREER award IIS-0133871.

References

Begole, J. B., Rosson, M. B., & Shaffer, C. A. (1999). Flexible collaboration transparency:
supporting worker independence in replicated application-sharing systems. ACM Transactions
on Computer-Human Interaction, 6(2), 95–132.

Bellini, P., Nesi, P., & Spinu, M. B. (2002). Cooperative visual manipulation of music notation.
ACM Transactions on Computer-Human Interaction, 9(3), 194–237.

41An Admissibility-Based Operational Transformation Framework

Davis, A. H., Sun, C., & Lu, J. (2002). Generalizing operational transformation to the standard
general markup language. In ACM CSCW’02 Conference on Computer-Supported Cooperative
Work (Nov. 2002), (pp. 58–67).

Ellis, C. A. & Gibbs, S. J. (1989). Concurrency control in groupware systems. In Proceedings of the
ACM SIGMOD’89 Conference on Management of Data. Portland Oregon, 1989, (pp. 399–407).

Ellis, C. A., Gibbs, S. J., & Rein, G. L. (1991). Groupware: Some issues and experiences.
Communications of the ACM, 34(1), 38–58.

Godefroid, P., Herbsleb, J. D., Jagadeesan, L. J., & Li, D. (2000). Ensuring privacy in presence
awareness systems: An automated verification approach. In ACM CSCW’2000 Conference
Proceedings (Philadelphia, Dec. 2000), (pp. 59–68).

Hymes, C.M. & Olson, G. M. (1992). Unblocking brainstorming through the use of simple group
editor. In ACM CSCW’92 Proceedings (Nov. 1992), (pp. 99–106).

Imine, A., Molli, P., Oster, G., & Rusinowitch, M. (2003). Proving correctness of transformation
functions in real-time groupware. In Proceedings of the European Conference on Computer
Supported Cooperative Work (ECSCW’03) (Sept. 2003).

Imine, A., Rusinowitch, M., Oster, G., & Mollis, P. (2006). Formal design and verification of
operational transformation algorithms for copies convergence. Theoretical Computer Science,
351(2), 167–183.

Knister, M. J., & Prakash, A. (1994). A framework for undoing actions in collaborative systems.
ACM Transactions on Computer-Human Interaction, 1(4), 295–330.

Li, D. & Li, R. (2004). Preserving operation effects relation in group editors. In Proceedings of the
ACM CSCW’04 Conference on Computer-Supported Cooperative Work (Nov. 2004), (pp. 457–
466).

Li, D. & Li, R. (2006). A performance study of group editing algorithms. In The 12th International
Conference on Parallel and Distributed Systems (ICPADS’06) (Minneapolis, MN, July 2006),
(pp. 300–307).

Li, D., & Li, R. (2008a). An approach to ensuring consistency in peer-to-peer real-time group
editors. Computer Supported Cooperative Work: The Journal of Collaborative Computing, 17
(5–6), 553–611.

Li, D., & Li, R. (2008b). An operational transformation algorithm and performance evaluation.
Computer-Supported Cooperative Work: The Journal of Collaborative Computing, 17(5–6),
469–508.

Li, R. & Li, D. (2005). Commutativity-based concurrency control in groupware. In Proceedings of
the First IEEE Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom’05) (San Jose, CA, Dec. 2005).

Li, R., & Li, D. (2007). A new operational transformation framework for real-time group editors.
IEEE Transactions on Parallel and Distributed Systems, 18(3), 307–319.

Li, R., Li, D., & Sun, C. (2004). A time interval based consistency control algorithm for interactive
groupware applications. In IEEE International Conference on Parallel and Distributed Systems
(ICPADS) (July 2004), (pp. 429–436).

Molli, P., Oster, G., Skaf-Molli, H., & Imine, A. (2003). Using the transformational approach to build
a safe and generic data synchronizer. In GROUP ’03: Proceedings of the 2003 International ACM
SIGGROUP Conference on Supporting Group Work (New York, NY, USA, 2003), (pp. 212–220).

Oster, G., Urso, P., Molli, P., & Imine, A. (2005a). Proving correctness of transformation functions
in collaborative editing systems. Technical Report 5795 (Dec.), INRIA.

Oster, G., Urso, P., Molli, P., & Imine, A. (2005b). Real-Time Group Editors Without Operational
Transformation. Research Report RR-5580 (May), LORIA — INRIA Lorraine.

Oster, G., Urso, P., Molli, P., & Imine, A. (2006a). Data consistency for P2P collaborative editing.
In Proceedings of the 20th Anniversary Conference on Computer-Supported Cooperative Work
(Banff, Alberta, Canada, Nov. 2006), (pp. 259–268).

42 Du Li and Rui Li

Oster, G., Urso, P., Molli, P., & Imine, A. (2006b). Tombstone transformation functions for ensuring
consistency in collaborative editing systems. In The Second International Conference on
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2006)
(Atlanta, Georgia, USA, November 2006). IEEE Press.

Ressel, M., Nitsche-Ruhland, D., & Gunzenhäuser (1996). An integrating, transformation-oriented
approach to concurrency control and undo in group editors. In Proceedings of the ACM
CSCW’96 Conference on Computer-Supported Cooperative Work (Nov. 1996), (pp. 288–297).

Shen, H. & Sun, C. (2002). Flexible notification for collaborative systems. In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work (Nov. 2002), (pp. 77–86).

Suleiman, M., Cart, M., & Ferrié, J. (1997). Serialization of concurrent operations in a distributed
collaborative environment. In Proceedings of the ACM GROUP’97 Conference on Supporting
Group Work (Phoenix, AZ, Nov. 1997), (pp. 435–445).

Suleiman, M., Cart, M., & Ferrié, J. (1998). Concurrent operations in a distributed and mobile
collaborative environment. In IEEE ICDE’98 International Conference on Data Engineering
(Feb. 1998), (pp. 36–45).

Sun, C. (2002). Undo as concurrent inverse in group editors. ACM Transactions on Computer-
Human Interaction, 9(4), 309–361.

Sun, C., & Chen, D. (2002). Consistency maintenance in real-time collaborative graphics editing
systems. ACM Transactions on Computer-Human Interaction, 9(1), 1–41.

Sun, C. & Ellis, C. (1998). Operational transformation in real-time group editors: issues, algorithms,
and achievements. In Proceedings of the ACM Conference on Computer-Supported Cooperative
Work (Dec. 1998), (pp. 59–68).

Sun, C., Jia, X., Zhang, Y., Yang, Y., & Chen, D. (1998). Achieving convergence, causality-
preservation, and intention-preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interaction, 5(1), 63–108.

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., & Cai, W. (2006). Transparent adaptation of single-
user applications for multi-user real-time collaboration. ACM Transactions on Computer-Human
Interaction, 13(4), 531–582.

Sun, D. & Sun, C. (2006). Operation context and context-based operational transformation. In
Proceedings of the ACM Conference on Computer-Supported Cooperative Work (CSCW’06)
(Nov. 2006), (pp. 279–288).

Sun, D., Xia, S., Sun, C., & Chen, D. (2004). Operational transformation for collaborative word
processing. In Proceedings of ACM CSCW’04 Conference on Computer-Supported Cooperative
Work (Nov. 2004), (pp. 162–171).

Vidot, N., Cart, M., Ferrie, J., and Suleiman, M. (2000). Copies convergence in a distributed
realtime collaborative environment. In Proceedings of ACM CSCW’00 Conference on Computer-
Supported Cooperative Work (Dec. 2000), (pp. 171–180).

43An Admissibility-Based Operational Transformation Framework

	An Admissibility-Based Operational Transformation Framework for Collaborative Editing Systems
	Abstract
	Introduction
	Background and motivation
	Problem abstraction
	Correctness criteria
	Intention preservation
	Operation effects relation

	OT-based algorithms
	Unidirectional transformation paths
	Unique transformation paths
	Bidirectional transformation paths

	Improvements over previous works

	A new consistency model
	Group editor
	Effects relation graph
	Some key concepts
	Correctness of group editors

	Transformation functions and conditions
	Transformation functions
	The need for tighter IT/ET preconditions
	Counterexamples
	Further analyses

	Sufficient conditions of IT
	Sufficient conditions of ET and SWAP
	Conditions of reordering sequences

	Integrating local and remote operations
	Control procedure
	An integrated example
	Stage one
	Stage two
	Stage three

	Proof of correctness

	Comparisons with related works
	Transformation functions
	Design approaches
	Complexities and performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

